
N

rNAVAL POSTGRADUATE SCHOOL
0Monterey, California

., THESIS

COMPUTER IMPLEMENTATION AND SIMU-
LATION OF SOME NEURAL NETWORKS USED IN
PATTERN RECOGNITION AND CLASSIFICATION

by

Mohamed H. Khaidar

March 1989

Thesis Advisor Tri T. Ha

Approved for public release; distribution is unlimited. D TI(2
.ELECTE II
MAY 2 6 1989

U~nclassified
e"-1, o~a~ c: f pa'ce

REPORT DOCUMENTATION PAGE
a R ,r*sc~: cass::-,cation Unclassified Ib Restrictne Mlarkings

- a ec~r~z\C sca::a At~.o::'3 Distribution Availability of Report
De slct~ o'a-ain ceueApproved for public release: distribution is unlimited.

-1 PC7:Orrmnn Orzaniza~cc'n Re. ort \urnbe-(s) 5 Ntonitori Organization Report Number(s)

,,L \xne of Perfc~nm;r2 O.zanization tb Of,;ce Svimbol 7a Name of .\oni:oring Organization
Nav-al Postiz-aduate School It y- ap;-lcabir 32 Naval Post~raduate School
c Address cjrv. s:aie. al:di ZIP code, 7b Address (cirv. stare, and ZIP code)

Monterey. CA 93943-5000 %lonterev. CA 93943-5000
sa Narne of Fund:r,: S:ronsoring Organizato Sb OfFice S\ymbol 9 Procurement Instrument Identification Number

fif aprilcable
Sc Address (cli. state, and ZIP code 1 10 Source of Funding Numbers

Program Element No IProject No ITask No Iwork unit Accession No

liii -urltv crjvdlc!swcaionh COMPUTER IMPLEMENTATION AND SIMULATION OF SOME NEURAL NET-
WORKS USED IN PA"TERN RECOGNITION AND CLASSIFICATION

1Perscca Au'.hor s', Mohamned 11. Khaidar
13a F'.:e (.f Repaort 13 b Ime Cc% ered 14 Date of Report (year. month, day) IS Pace Count
Master s ThesisToMrh1913

roea Nc..o:. The %iexs expressed in this thesis are those of the author and do not reflect the official policy or po-
sition 01 the Department of D,,fense or the U.S Government.

- Cosa,; Codes IS Subject Terms (con.i:rue on reverse if necessary and iden r/I by block nUmb6erI

F: . Subfroup Neural network. Hoptield net. Hamngn net, Carpenter .Grossberg net. pattern

1 t:A kC o rectrsc 7 n C3' ancd identirV by 61l1ck nuinibcr

Searchers and scientists have been studying -neural networks for many years hoping to achiieve human-like performance
ithe fieids of spee .ch and pattern recogrnition and classification. In thi s study, we are first go~nw to make an introduction to

the field of artilicial neural network, then we are going, to describe some of the neural nets used in the pattern recognition
and cla sification. A computer simulation progam from an algorithic approach for each one of these networks will be
constructed and used to implement the operation of the net. Its ability wkill be demonstrated in differentiating between different
patterns and even correcting a noisy pattern and recognizing it. The Hopfield network. the Hammuing network and the Car-
penter Grossberg network will be individually u*ilzed in developing an algorithm for pattern recognition and classification.

The maximum-lelihood sequence estimation function will be mapped onto a neural network structure. The application
of this structure computations for data detection in digrital communications receivers wvill be described. A computer simulation
rproarn will be constructzd and used to show that neural networks offer attractive implementation alternatives for NILSE.

[D:s*,r~but:on A' hb:.of Abstract 2t Abstract Security Classification
SuanclassiF~ed r.ntd E amne as rerort E1 DT!C users Unclassified

SNoeof P.cspcns-celno:cx 22b Telephone i nclude Area code,, .. c Office Symbol
ITn T. 1 a (408) 384-2991l 621-la

DD) FOR01 I 3.sc AR U3 APR ed;tion mia% be used until exhausted security c: ,,s;ficatiun of this pa:e
A, K:ditions ' i e uasolete

U.nclassified

Approved for public release; distribution is unlimited.

Computer Implementation and Simulation of Some Neural Networks Used in Pattern
Recognition and Classification

by

Mohamed H. Khaidar
LTJG, Royal Moroccan Navy

B.S., Royal Naval Academy, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author:

amhaidar

Approved by: T_____

Tri T. Ila, Thesis Advisor

Ramakrishna Janaswamv, Second Reader

'--John P. Powers, Chairman,

Department of Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ABSTRACT

Searchers and scientists have been studying neural networks for many years hoping

to achieve human-like performance in the fields of speech and pattern recognition and

classification. In this study, we are first going to make an introduction to the field of

artificial neural networks, then we are going to describe some of di neurai nets used in

the pattern recognition and classification. A computer simulation program from an al-

gorithmic approach for each one of these networks will be constructed and used to im-

plement the operation of the net. Its ability will be demonstrated in differentiating

between different patterns and even correcting a noisy pattern and recognizing it. The

lopfield network, the Hamming network and the Carpenter Grossberg network will

be individually utilized in developing an algorithm for pattern recognition and classi-

fication.

The maximum-likelihood sequence estimation function will be mapped onto a neural

network strucure. The application of this structure computations for data detection in

digital communications receivers will be described. A computer simulation program will

be constructed and used to show that neural networks offer attractive implementation

alternatives for MLSE.

"N Accesslofl For

.,~~ NTIS GR A,1 r
CDTic TAR

DJIst r i tt au/.

. . a~i t dior

Dtst I 5eclal

i

TABLE OF CONTENTS

I. INTODUCTION ... I
A. WHAT IS A NEURAL NETWORK: I
B. NEURAL NETWORKS IN PATTERN RECOGNITION AND CLASSI-

F IC A T IO N : .. 3
C. NEURAL NETWORKS AS MLSE RECEIVERS OF BINARY SIGNALS

IN GA USSIA N N O ISE : ... 5

II. THE HOPFIELD NETW ORK 6
A . G EN ER ALITIES: ... 6
B. OPERATION OF THE HOPFIELD NETWORK: 6

C. IMPLEMENTATION OF THE HOPFIELD NETWORK: 9
D. SIMULATION OF THE HOPFIELD NETWORK: 12

III. THE HAMM ING NETWORK 19

A . G EN ERA LITIES : .. 19
B. OPERATION OF THE HAMMING NETWORK: 20

C. IMPLEMENTATION OF fiHE HAMMING NET: 24
D. SIMULATION OF THE HAMMING NETWORK: 27

IV. THE CARPENTER ' GROSSBERG NET 49

A . G EN EIRA\LITIES : .. 49

B. IMPLEMENTATION OF THE CARPENTER 'GROSSBERG NET: ... 49

C. SIMULATION OF THE CARPENTER 'GROSSBERG NET: 53

V. NEURAL NETWORK AS A BINARY MAXIMUM-LIKELIHOOD SE-

QUENCE ESTIM ATOR .. 60

A , G EN ERA LITIES : .. 60

B. MAXIMUMd-LIKELIHOOD SEQUENCE ESTIMATION: 60

C. NEURA L NETW ORK : 63

D. MAPPING OF MLSE ONTO A NEURAL NETWORK: 66

E. NEURAL NETWORK MAXIMUM-LIKELIIIOOD RECEIVER: 68

iv'

F. SIMULATIONS AND RESULTS : 70

VI. CO N C LU SIO N .. 75

A. SUMMARY OF RESULTS: 75

B. NEURAL NETWORK TASKS: 77

C. CONCLUSIONS: ... 78

APPENDIX A. PROGRAMING THE HOPFIELD NET WHEN USED AS A

C LA SSIF IE R : .. 80

APPENDIX B. PROGRAMING THE HAMMING NET WHEN USED AS AN

OPTIIUM CLASSIFIER : .. 88

APPENDIX C. ART AND OPERATION OE THE CARPFNTERi

G RO SSBER G N ET : ... 95

APPENDIX D. PROGRAMING THE CARPENTER,' GROSSBERG NET ... 98

APPENDIX E. TIE PARA.METERS FOR THE ML.SE NEURAL NETWORK 106

APPENDIXF. PROGRAMMING THE MLSE NEURAL NETWORKOS

LIST O F REFEREN CES .. 120

INITIAL DISTRIBUTION LIST 122

LIST OF TABLES

Table 1. SIMULATIONS RESULTS FOR MLSE NEURAL NETWORK (STA-

TIONARY CHANNEL) 73

Table 2. SIMULATION RESULTS FOR MLSE NEURAL NETWORK

(TI.M E-VARYING CHANNEL) 74

v'i

LIST OF FIGURES

Figure 1. Neural Network and a Nodal Preprocessing Element [Ref. 11 I
Figure 2. Biological Neurons and a Small Biological Neural Network [Ref. 11 2

Figure 3. A taxonomy of Neural Network Classification and Clustering Models [Ref.

21 ...4
Figure 4. The hard-limiting function used in the Hopfield network 7

Figure 5. The Hopfield net used as a content-addressble memory [Ref. 2] 9
Figure 6. The Eight stored patterns 11

Figure 7. Hopfielf net response to the first input pattern 13

Figure S. Hopfield net response to the second input pattern 14

Fi2ure 9. Classification response of the Hopfield net tc the second input pattern 15

Figure 10. Hopfield net response to the third input pattern 16

Figure 11. Hopfield net response to the perfect input pattern 17
Figure 12. Feed-for-vard neural net used to calculate N1 weighted sums from the N

elements of the input pattern [Ref. 4] 21

Fi2ure 13. The iterative neural net called "maxnet" that picks the maximum of NI

inputs [R ef. 4] 22
Figure 14. The complete neural network classifier referred to as The Hamming net

[R ef. 2] . 24

Fieure 15. The first four stored patterns 26

Figure 16. The rest of the 10 stored patterns 27

Figure 17. Response of the Han ning net to the first input pattern 28

Figure 18. The output of the I lanm uin2 net at t = 1 for digit "3" 29
Figure 19. The output cf the iamnmitng net at t = 2 for digit "3" 30

Figure 20. The output of the Hamming net at t = 3 for digit "3" 31

Figure 21. The output of the lamming net at t = 4 for digit "3" 32

Figu,,e 12 .. The output of the Hamming net at t = 5 for digit "3" 33

Figure 23. The output of the [lamming net at t = 6 for digit "3" 34

Figure 24. The output of the Hamming net at t = 7 for digit "3" 35

Figure 25 . The output of the Hamming net at t = 8 for digit "3. 36

Figure 26. Response of the Hamning net to the second input pattern 39
Figure 27. The output of the tlanxming net at t = 1 for digit "9"..............40

"ii

Figure 28. The output of the Hamming net at t = 2 for digit "9" 41
Figure 29. The output of the Hamming net at t = 3 for digit "9" 4
Figure 30. The output of the Hamming net at t = 4 for digit "9" 43
Figure 31. The output of the Hamning net at t = 5 for digit "9" 44

Figure 32. The output of the Hamming net at t = 6 for digit "9" 45

Figure 33. The output of the Hamming net at t = 7 for digit "9" 46
Figure 34. Response of the Hamming net to the perfect input pattern 47
Figure 35. The major components of the Carpenter, Grossberg classification net

[R ef. 2] ..5 1
Figure 36. Adaptive Maximum-Likelihood Receiver [Ref. 31 61

Figure 37. Hopfield Neural Network [Ref. 3] 64
Figure 3S. M atrix of synaptic connections [Ref. 3] 67
Figure 39. M LSE neural network [Ref. 3] 67

Figure 40. Neural Network Based Maximum-Likelihood Receiver [Ref 3] 69

Figure -41. Seven Tasks that Neural Networks Can Perform [Ref. 1] 77

Figure 42. The ART net search for a correct F, code. [Ref. 12] 95

viii

I. INTRODUCTION

A. W HAT IS A NEURAL NETWORK:

A neural network is a highly parallel network with many interconnections between
analog computational elements or nodes. In other words, a neural net is a system com-
posed of many simple processing elements operating in parallel whose function is deter-
mined by network structure, connection strengths and the processing performed at
computing elements or nodes. These nodes offer one possible solution to the problem
of" obtaining the massive parallelism and computational requirements that are presumed
to be requireJ for such problems as pattern recognition and classification that we are
goin, to discuss in this study. Artificial neural nets are of interest primarily because they
may be able to emulate the speed and performance of real biological neural nets using
many si mpie slow computational elements operating in parallel to obtain high compu-
tation rates. Figure 1 illustrates this definition.

NEURAL NETWORK PROCESSING ELEMENT

,,, -25 OUT

Figure 1. Neural Network and a Nodal Preprocessing Element [Ref. 11

A small interconnected neural network is presented on the left side of this figure and

one simple type of processing element or node is presented on the right side [Ref. II. This

particular node forms the sum of N weighted inputs presented on N input links and

passes the result through a nonlinearity out on one output link. In addition, the weights

on the input links can be adapted based on information concerning the correctness of

the output. Neural nets almost always include an inherent nonlinearity and require

primarily local conne-ctivitv between nodes which are almost always nonlinear, typically

analog. and may be slow compared to modern digital circuitry. Nodes may also include

temporal integration and other types of time dependencies and also mathematical oper-

ations more complex than summation. [Ref. 11

Architectures and processing elements used in neural network models are simplified
versions of those observed in biological nervous systems. Figure 2 illustrates a number

of different types of biological neurons and a small biological neural network. [Ref. 1]

NErwonK dr/

-A-
@ - b

p ~sirotAnl
-- I NEUnON

e--tinm

PYVIAMIf

NE Urin 0l

Figure 2. Biological Neurons and a Small Biological Neural Network [Ref. 1]

Characteristics of biolocical neural networks that artificial neural network models

hope to provide include: [Ref. 1]

* Fault tolerance to loss of a small number of computational elements.

• Insensitivitv to small variations between computational eiements.

• The need for primarily local connectivity and local learning rules.

• Real time response.

* Parallelism.

Work in neural networks is generally oriented towards achieving rather high-level
intelligent functions, such as pattern recognition, categorization, and associative mern-
or,. The biological knowledge of these functions is far from complete, but it is verv clear

that neurons and synapses are the fundamental devices used. It is also clear that these
devices are not programmed in the conventional manner; rather, problem-specific
knowledge is acquired by a learning process which alters the neuronal parameters di-
rectly. These are the two principal facts of biology that have been applied to neural
networks. They are the equivalent of the transistor and of the logically structured pro-
gram in conventional computers. In addition, the algorithms for calculating the output
of a model neuron from its input and the high synaptic connectivity used in model net-

works both derive from biological observations. [Ref. 1]
Modern neuroscience provides a great wealth of additional information that has

only just begun to be applied to neural network modeling. This is because the path from
this more recent biological information to the desired intelligent functions is relatively

tenuous, and the simple ideas of neurons, synapses and learning, are themselves sur-
priingly powerfl. [Ref. 1]

Ihe few principles of neurons, synapses. and learning constitute the biological
foundation of most neural networks. They are, of course. insufficient to specify a net-

work with the kinds of high-level intelligent functions mentioned above. In order to

achieve these f"unctions. the biological foundation is supplemented with cleverly invented

ideas, some drawn from other disciplines. notably physics. This non-biological approach

is appropriate considering the technological goals of the research, the lack of clear al-

ternative biological solutions, and the possibility that future research will verify that such

imported ideas are in fact biological. flowever, if biological realism is not sufficiently

maintained, neural networks will lose the ability to interact profitably with neuroscience.

[Ref. I[

B. NEURAL NETWORKS IN PATTERN RECOGNITION AND

CLASSIFICATION:

Pattern recognition and classification is an area where neural nets have proven to

be very successful.
A taxononvy of six important neural nets that can be used for recognition and clas-

Sfication of unknown pattcrns is presented in Figure'3.

3

NEURAL NET CLASSIFIERS FOR FIXED PATTERNS

BINARY INPUT CONTINUOUS-VALUED INPUT

SUPERVISED UNSUPERVISED SUPERVISED UNSUPERVISED

HOPFIELD HAMMING ART 1 PERCEPTRON MULTI-LAYER RCE FEATURE MAP SEFONN

NET NET A I PERCEPTRON CLASSIFIER SELF-ORGANIZING

FEATURE MAPS

OPTIMUM LEADER GAUSSIAN MIXTURE k-NEAREST k-MEANS
CLASSIFIER CLUSTERING CLASSIFIER NEIGHBOR CLUSTERING

ALGORITHM ALGORITHM

Figure 3. A taxonomy of Neural Network Classification and Clustering Models

[Ref. 2]

This taxonomy is first divided between networks with binary and continuous valued

inputs. Below this. nets are divided between those trained with or without supervision.

Overall. adaptive neural networks can be trained using three types of training proce-

dures: [Ref. 1]

Supervised training, which requires labeled training data and an external teacher.
The teacher knows the desired correct response and provides a feedback error sig-
nal after each trial. This is sometimes called reinforcement learning, or learning with
a critic when the teacher only indicates whether a response was correct or incorrect
and does not provide detailed error information.

* Unsupervised training, sometimes called self-organization , uses unlabeled training
data and requires no external teacher. Data is presented and internal categories or
clusters are formed which compress the amount of input data that must be proc-
essed at higher levels without losing important information. Clustering is an im-
portant component of many pattern classification procedures. It is sometimes
called vector quamizaiion when used to convert analog inputs into a binary form
suitable for transmission or storage.

* Self-supervised training is used by automata which monitor performance internally
and require no external teacher. For example. automata which learn to track a
moving spot by controlling simulated eve muscles can generate an error signal

4

based on the distance between the position of the spot on a simulated retina and
the center of' fovea of the retina. Self-supervision is sometimes called learning-bv-
doing or learning b " e.,erihneniation.

Nets trained with supervision such as the Hopfield net and perceptrons are used as

associative memories or as classifiers. The teacher provides side information or labels

that specify the correct class for new input patterns during training. Most traditional

statistical classifiers, such as Gaussian classifiers, are trained with supervision using la-

beled training data [Ref. 2]. Nets trained without supervision, such as the Kohonen's

feature-map forming nets [Ref. 2]. are used as vector quantizers or to form clusters. The

teacher does not provide these nets with an-y information concerning the correct class

during training. The classical K-means [Ref. 2] and the leader clustering algorithm

[Ref. 2] are trained without supervision.

In this study, we are going to focus on the use of neural net classifiers for fixed

patterns with binary input elements. We are going to implement and simulate, for dif-

ferent cases of input patterns, the supervised Hopfield net. the Hamming net which is a

neural net implementation of the optimum classifier for binary inputs, and the unsuper-

vised leader clustering algorithm of the Carpenter Grossberg net.

C. NEURAL NETWORKS AS MLSE RECEIVERS OF BINARY SIGNALS IN

GAUSSIAN NOISE:

In this stud,, we are also going to focus on the use of neural network based

maximum-likelihood sequence estimation (MLSE) receiver structure. In particular, the

problem of detecting digital data symbols transmitted over a time-dispersive time-

varving channel in the presence of additive Gaussian noise will be considered . We are

going to computer implement this neural network structure and simulate it for stationary

or time-varxing transmission channel. Results of these simulations will be provided to

show that neural networks offer attractive implementation alternatives for MLSE

[Ref. 3].

11. THE HOPFIELD NETWORK

A. GENERALITIES:

In recent years, an upsurging interest in neural networks made of highly parallel

computational elements connected in patterns that are reminiscent of biological neural

nets has caught attention of researchers and scientists. In particular, more recent work

has explored the ability of a neural model described by Hopfield to serve as a content-

addressable memory (classifier). This network retrieves one of the M stored exemplars

given an input pattern which is a noisy version of one of these exemplars. A classifier

determines which of the M exemplar patterns is most similar to the noisy input pattern.

In the following study, we will focus on the classification problem because a

content-addressable memory is essentially a classifier which outputs the exemplar for the

selected class instead of an index to the class. Classification is a fundamental operation

that is essential to the important problem of speech and image recognition whether

achieved by biological or artificial means.

Past studies have demonstrated that the Hopfield model can be used as a content-

addressable memory for random input patterns and to classify finary patterns created

from radar cross sections, consonants and vowels extracted from spoken words, and lines

in an image. These results demonstrate that a neural network based on the lopfield

model can perform classification. In addition. Hopfield models have been successfully

applied to other problems, such as. the traveling salesman problem, the Analog to Dig-

ital (A-D) converter problem. and the signal decomposition problem. [Ref. 4]

B. OPERATION OF THE HOPFIELD NETWORK:

The unit used by a number of scientists is the familiar binary threshold unit (Mc
N

Culloch-Pitts neuron) whose output is 1 if and only if Zw,,s, > 0, where 0 <j < .11 - 1;
'=1

otherwise 0, where N is the number of elements or bits in a pattern, s, is the current value

of the ith input and w,, is the corresponding synaptic weight from i to unit j whose

threshold is 0,. In the McCulloch-Pitts networks, every neuron processes its inputs to

determine a new output at each time step [Ref. 5]. By contrast, a Hopfield net is a net-

work of such units subject to the updating rule: "Pick a unit at random. If the sum of

the weights on connections to other active units is positive, turn it on. Otherwise turn

it off'. The operation of this network is described as we first apply input values of an

6

unknown pattern at time zero through the bottom threshold-logic nodes. This forces the

output of the net to match the unknown pdttern at time zero:

P(0) = x 0, <i<N- 1 (2- 1)

where gQ,(t) is the output of node i at time t and x, is element i of the input pattern taking

on the values + 1 or -1. Following this initialization, the network iterates in discrete

time steps using the given equation:

g 1(t+ 1) =fh[_oLi k(t)] < j5 <M-1 (2-2)

In this equation fh is a modified hard-limiter function and w, is the weight applied

to the output of node i that feeds to node j. Previousely, we have assumed the elements

of the input vector x take on values + 1 and -1, respectively, for the + 1 and -I states,

then f is the symmetric hard-limiting function.

{1~ f a > (2- 3)= 1 _ 0.o____

+I

Figure 4. The hard-limiting function used in the Hopfield network

The weights are set using exemplar patterns for all stored classes.

7

M-1

t Xj i j

w1j{j - S- 0 (2-4)

o i =j ,0Oi 1j<iN-I

where xs is element i of the exemplar for pattern s. The output of each node is fed to

every other node with a weight that is symmetric, and each node does not feedback to

itself. After convergence, the output of the net is the final pattern represented by the

outputs of the nodes.

x' i =Ui(oo) i0,1,...,N - 1 (2-5)

The network is considered to have converged when the outputs no longer change

on successive iterations. When the Hopfield net is used as an associative memory. the

network output after convergence is used directly as the restored memory. When used

as a classifier, the output of the t-opfield net after convergence must be compared to the

M exemplars to determine if it matches an exemplar exactly. If it does, the output is the

exemplar that best matches the output pattern. If it does not, then a "no match" result

occurs.

Hopfield first demonstrated that when th: net is trained with M exemplar patterns

using Equation 2-4. and an exemplar is presented at time zero, then the final pattern in

the net after conver2ence will be one of the M exemplars with a high probability if.

M< 0.15N (2-6)

The exemplars thus form stable states of the net. Hopfield's statistical results were

obtained with randomly generated exemplars. It is possible and relatively easy to select

a set of NI exemplars that satisfies Equation 2-6, but does not form stable states in the

Hopfield net. These exemplars must have many elements in common. When an exemplar

for one of these patterns is presented at time zero, the network does not converge to any

of the trained exemplars. Instead, it converges to a spurious pattern never seen before.

This problem of spurious states also occurs when a noisy exemplar is presented to the

net. Even when the M exemplars are stable states of the net, there is no guarantee that

noisy versions of these exemplars passed through discrete, memoryless channels and

presented at time zero will converge to the original exemplars. Hopfield, for example.

observed that the number of spurious states found increases substantially as more ele-

ments in the input exemplar are corrupted.

8

The Hopfield neural network can be used as a classifier only when:

1. The exemplars for the patterns to be classified form stable states and converge to
themselves when presented at time zero as input.

2. A mechanism is provided to determine which of the M exemplars the net is closest
to after convergence.

The first requirement is a necessary condition for a proper classification operation.

The second is necessary because the Hopfield net by itself is not a neural-net classifier,

but is more like a preprocessor which still requires a classification net to select which of

the N1 classes an output pattern is closest to

OUTPUTS IVaLId After Convergence)

-2 -1

x x I X "-2 X I-1

INPUTS (AppLied at time Zero]

Figure ". The Hopfield net used as a content-addressble memory [Ref. 2]

It is difflicult to satisfy the requirement that exemplars form stable states without

actually running the Hopfield net. In general, patterns that are more random will satisfy

this requirement more easily than patterns with many bits in common.

C. IMPLEMENTATION OF THE HOPFIELD NETVORK:

The Hopfield network can be used either as an associative memor-v or as a content-

addressable memory which is described in this study. The Hopfield net shown in Figure

9

5. has N nodes containing hard-limiting nonlinearities and binary inputs and outputs

takine on the values + 1 and -1. The output of each node is fed back to all other nodes

via weights denoted w,

A computer algorithm to implement the operation of this net as a content-

addressable memory can be summarized in four necessary steps : [Ref. 2]

Step 1. Assign Connection weights : using Equation 2-4

Step 2. Initialize with Unknoisn Input Pattern : using Equation 2-1

Step 3. Iterate Until Convergence : using Equation 2-2, the process is repeated until

node outputs remain unchanged with further iterations. The node outputs then represent

the exemplar pattern that best matches the unknown input.

Step 4. Repeat by Going to Step 2

The weights are first set using Equation 2-4 and elements of the M stored exemplar

patterns as the operation algorithm of the net stated in the first step. Eight patterns

(NI = 8). shown in Figure 6. have been selected to simulate this algorithm and were

stored in the memory of the network.

For convenience, these eight patterns were selected to be 120 nodes (12 by 10 ma-

trices) each. The only limitation in the choice of N (number of nodes) is the time that

the net will take to iterate and converge to an output pattern or respond with a "no

match". After assigning connection weights, an unknown input pattern is imposed on the

net at time zero by forcing the output of the net to match the unknown pattern. Then.

the net iterates in discrete time steps. The net is considered to have converged when

outputs no longer change with further iterations. The pattern specified by the node

outputs. after convergence is reached, is the net output. (Ref. 4]

Using the Hopfield net as a classifier, the output will be compared to every one of

the M class patterns. If the output matches an exemplar, the classification is terminated

and the output is that class whose exemplar best matches the output pattern. If it does

not, then a "no match" result occurs.

10

au n

. . . E.

E u......E ..

m u a . . . l

a am

S .l i l..l ll
. E m

. E E ...

S

S E ..

INE u......II. i Enin .m ..

uu 6...... N Eight .sto. pat

il5

El m...... II i. ur

. I I l i ..

. m m ui n|.. , .

. .a.. . .. umE i l lrn. i..u

I I *ur *1 1 1

El.,.Eu * El
i m m m I N I

I I *lI..

urnE..,.a. * .u llu

U , .I o . . l o~

mm

. am m m m m

Figure 6. The Eight stored patterns

11

D. SIMULATION OF THE HOPFIELD NETWORK:
Using the Fortran program provided in Appendix A, we simulated the operation of

the t-opfield net when used as an addressable-content memory (classifier) for different

inputs. For convenience and simplicity, the M class patterns were first introduced to the
net as a matrix of N by M (120 by 8), where each vector colunm of 120 nodes represents

the 12 by 10 matrix representation of the class. The first vector colunm represents the

pattern of a 0", the second of a '1', the third of a '2', the fourth of a '3', the fifth of a '4'.
the sixth of a '6'. the seventh of the block pattern representation of the 'point' and the
eight and last of a '9'. The elements of each class pattern take on the values of + I for
a ' black pixel ' and -I for a

The behavior of the network is simulated first by presenting the pattern of digit '3'
as an input pattern. To make it more interesting, a corrupted version of this pattern is

achieved by randomly reversing each bit, of the matrix representation of digit 3, inde-

pendently from + I to -1 and vice versa with a probability of 0.25. Implementing this

pattern is equivalent to receiving noise corrupted bits of a digit in a noisy communi-
cation channel.

The corrupted input pattern was then imposed on the net at time zero. After the

first iteration, the net still can not tell which class the input pattern corresponds to. As
more it .'rations took place, the output becomes more and more like the correct exemplar
pattern of the digit 3, as you can see in this simulation result provided in Figure 7.

Then. at the third iteration, the net has converged and the output. as can be seen.

is indeed the pattern of the digit 3. Only three iterations were sufficient for the net to
converge to the corrected digit and to recognize it as a 3. Now, we tried to see if we

present a corrupted pattern of another digit, how many iterations will be used to con-

verge to the correct result? Will it take only three iterations to do so ? The input pattern

that we used was of digit '9' and using the same procedure we randomly reversed each

bit from + 1 to -1 and vice versa with the same probability and error distribution as
before. The response of the network to this input pattern is illustrated in Figures 8 and

9.

12

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (") REPLACES A 1 AND EVERY (.) REPLACES A -1:

-1 -1-1 1 1 1 1--1 1- I U U " "
-1 i1-1 1 1 1 1 1 1 1 ." U U U U U "
11 -1 i-1 1--1 1-1i I -i -i " 3 .

1 -1 -1 -1 -1 -1 -1 -1 1 -1 3

-1 -1 -1-1-1 1 -1-1 1 -1............ •
-1 -1 1 - 1 1 1 1-1i-1I * U U U

-1 -1 -1 -1 -1 -1 1 1i 1 -1...............•
-1 -1-1 -1 I-1-1 1-1 -1 " "un .

1i 1 1i 1 1-1 i1 -- 11 • • " "

THE OUTPUT Or THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE
UNKNOWN INPUT PATTERN PRESENTED. THE PATTERN ON THE LEFT CORRESPONDS
TO THE OUTPUT AFTER THE 1ST ITERATION WHILE THE PATTERN IN THE MIDDLE
CORRESPONDS TO THE OUTPUT AFTER THE 2ND ITERATION, THE PATTERN ON THE
RIGHT CORRESPONDS TO THE OUTPUT AFTER THE 3RD ITERATION.

.
* U .3...........................3u

* . 3 Un .

3. . . U • • •..........UU • • •

3 3 • 3 3

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.
AFTER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT THREE.

Figure 7. Hopfielf net response to the first input pattern

13

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY () EPLACES A 1 AND EVERY () REPLACES A -1:

UNKOW INU PATR PRSNTD TH PATR ON TH LEF -iORRESPONDS"
TOTH OUTPU 1FE 1H 1ST ITRAIO WHL TH PATR ON TH RIGH

TH OUPU OF THE I -IE NEWR AFE TH 3R ITRTO IS PRESE-

-1 1i 1 -i 1 1 1 1 1-1 U " U U U U "

1 -1 -1-1 1 1-1-1- 1 1 • • U U

-1 -1 -1 1 -1 -1 -1 1 1 -1i " U"

THE OUTPUT OF THE HOPFIELD NE0'OR LOOKS LIKE THE FOLLOWING FOR THE
UNKOW INPUT PATTERN PRESENTED. THE PATTERN ON THE LEFT CORRESPONDS

TO THE OUPUT ATER THE 1ST IT TION WHI THE PATTERN ON THE RIGH
CORESPONS TO THE TPUT A R THE 2ND ITEERTION.

Figu.r 8 U * . .r.p. Uo ic n

. . . .* U i l l i n U . I.

* l l l l l l * l l l l l l U

* IU U I I I I I I I IU

• I .. , N I I

..IlI I I

I o , , . o i * . , . . . U . . .

II • • • . EU.n.ll

THE OUTPUT OF THE HOPFIELD NE04RI AFTER THE 3RD ITERATION IS PRESE-
NTED ON THE LEFT WHILE THE PATERN ON THE RIGHT CORRESPONDS TO THE
OUTPUT AFTR THE 4TH ITERTION.

.. . . I I I I I I I I I IU

. .. . U I I I I I I , . .I I I UI I

, , EUI UE U II I I

UI I UI UII

UN.U.oU

I I I . ° . m m.I I I

Figure 8. I-opfield net response to the second input pattern

14

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.
AFTER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT NINE.

Figure 9. Classification response of the Hopfield net to the second input pattern

Then. using the same probability of error and distribution of errors in the input

pattern as for digit '3', we conclude from the result of this simulation that the number

of iterations needed to get the right answer depends on how close the input pattern was

to a stored one. This may explain why there is a difference in the number of iterations

taken by the net to converge to the right answer. We may say that the corrupted input

pattern of digit '3' was closer to the perfect exemplar for the '3' than the noise disturbed

input pattern of digit '9' is to the perfect '9' using the same noise corrupted bits distrib-

ution and the same probability of error as for digit "3'.

Usin2 the noise disturbed pattern for digit '9' as input to the net, but now with dif-

ferent error distribution and the same probability of error (0.25). the simulation and re-

sults were as shown in Fi2ure 10.

The result shows perfectly that the number of iterations that the network needs to

co n;'erRe depends on the error distribution in the input pattern and not on the proba-

bility of error.

Now as a conclusion after all these simulations and results, one could say that when

imposing a perfect input pattern on the net, the network will take only one iteration to

recognize it as a stored one. To verify this finding, we take the pattern of digit '2' and

present it as the input pattern to the net at time zero without making any change in its

elements (a perfect exemplar of digit '2'). The response of the net to this perfect input

pattern is presented in Figure 11.

15

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (a) REPLACES A 1 AND EVERY (.) REPLACES A -1:

-1 1 -1 1i 1i - -1 - -1 -i *UU

- - 1 1 1 1- 1 1

-1 -1 -1 1 1 1 1 1 1 * " * * " "
1 1-1 -1 1 -1-1 1 1 -I U * U

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-i1-1-11i-i1-i1-1-111 i " U

1 1 I-1 -1-I-1 -1 1 1I * U U

-1 -1-1-1 1I 1 1I 1 1 1 " " " "

THE OUPUT OF THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE

CLKNOWN INPUT PATTERN PRESENTED. THE PATEN ON THE LEFT CORRESPONDS
TO THE OUTPUT AFTER THE TTN PEAINEDH THE PT NE MIDDLE
CORRESPONDS TO THE OUTPUT AFTER THE 2ND ITERATION, THE PATTERN ON THE
RIGHT COAESPONDS TO THE OUTPUT AFTER THE 3RD ITERATION.

* U * U • 311 EU U • •

. .. mm m u U . E. • E • m ul •..

ml................. ... , •... UElE

m. . . U U * m u •. . al u m .. •

.

CLASSIFICATION OF THE UNKNOWN INPTr PATTfERN:

AT THIS POINTI, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUT-PUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OUTPUT'. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KqNOWN PATTERN OR A NO MATCH WILL OCCUR.
AFTER CLASSIFICATION, THE OUTfPUT PATT ERN OF THE HOPFIELD NET MATCHES

BEST THE PATTERN OF DIGIT NINE.

Figure 10. Hopfield net response to the third input pattern

16

THE MK.NOWN1 INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (•) REPLACES A 1 AND EVERY (.) REPLACES A -1:

1 1 1 1 1 1 1 1-1- -i K L T F F T H E
1 1 1 1 1 1 1 1-1- -iE T P " H " T N

-1 -1 -1 -1 -1 -1 1 1 -1 -1.............. U

-1 -1 -1 -1 -1 -1 1 1 -1 -1.............. U

-1 -1 -1 -1 -1 -1 1 1 -1 -1.............. U

1 1 1 1 1 1 1 1-1-1 " T aON1 1 -1 -1 -1-1-1 -1-1 -1 U

1 1 -1 -1 -1 -1 -1 -1 -1 -1 " "
1 1 -1 -1 -1 -1 -1 -1 -1 -1 ' "
1 1 1 1 1 1 1 1 -1-1 U U U U U U U U

THE OUTPUT OF THE HOFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE
UNKNOWN INPUT PATERN PRESENTED. THE PATTERN SHOWN HERE IS THE NET'S
OUTPUT AFTER THE 1ST ITERATION.

. .. . U ..

• °

m m ° ... • U

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUT'PT

OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT" NODES IS THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KN'OWN PATTYERN OR A NO MATCH WILL OCCUR.
AFTER CLASSIFICATION, THE OUTPUTf PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PA:I ERN OF DIGIT TWO.

Figure 11. Hopfield net response to the perfect input pattern

17

The result was as we thought; it took the net only one iteration to recognize the

input pattern as one of the %I class stored patterns. From these simulations we can
conclude that the Hopfield network when used as a classifier can be useful in a com-

munication receiver where its task is to recognize the received bits, also to correct the

corrupted ones and to recognize them. However, the Hopfield net is only iterating be-
tween an input pattern and the ones that are already stored in the memory of the net.

The number of these patterns (NI) is a limitation to the proper operation of the net as
a classifier because of the convergence condition demonstrated by Hopfield, which states

that the net will converge with high probability if M < 0.15A'. A non-learning network
is what the Hopfield net is, compared to other networks that we are going to describe

in the following chapters. However. it has an important advantage over the others, its

ability to recognize patterns even in noisy environement as long as the original pattern
was stored in its memory prior to its use. otherwise, a "no match" will occur.

18

I11. THE HAMMING NETWORK

A. GENERALITIES:
The Hopfield net, as we have seen, is often tested on problems of pattern recognition

and classification by taking an input exemplar and reversing its bits randomly with a

certain probability. The classifier in this study will calculate the Hamming distance to

the exemplar of each class and select that class with the minimum Hamming distance to

the specified input pattern. The Hamming distance is the number of bits in the input

which do not match the corresponding exemplar bits. A net, which will be called the

Hamming net, implements this algorithm using neural net component. Instead of cal-

culating the Hamming distance directly, we will calculate N minus the Hamning dis-

tance and maximize this function, where N is the number of elements or bits in a pattern

representation. [Refl 4]

N minus the Itamming distance can be calculated from a weighted sum of the N

elements of the input vector. If the elements of the input pattern to the net take on the

values + I and -1 for the respective states, then

IV-i
N-Nj = ± (3- 1)Sham Cj +I Y, Xi

i=O

where.

w"li- 2 (3 - 2)

and

N 2 (3 - 3)

Here x; is the value of element i of the exemplar for class j. When all elements in the

input vector match an exemplar exactly, each element in the sum of Equation 3-I adds
1 and adding c, given in Equation 3-3 gives a total of N. Whenever an element in the2"

input pattern does not match the corresponding element in the exemplar, the prior total

is decremented by I as required. [Ref. 4]

19

On the other hand, when elements of the input pattern x take on the values 0 and
+ 1 for the -I and + 1 states, respectively, N minus the Hamming distance can be cal-

culated from

N- 1

N -A-ham = Ci + Zwx, (3-4)

where.

(f.XIIi = +1 (3-5)

and

N-1

=i AN =N1 (3 -6)
1=0

In the above equation, Y) represents the number of zero elements in the exemplar

for class j. When all elements in the input pattern match an exemplar exactly, the sum

in Equation 3-4 adds up to the number of positive input elements. This is added to the

number of zero input elements results in N, as desired. The sum is reduced by one

whenever a zero input element that matches an exemplar becomes positive, and when-

ever a positive input element that matches an exemplar becomes zero. [Ref. 4]

Here we have made a brief introduction to the Harmring net used as a classifier, as
the net that calculates the Hamming distance to exemplars for all classes and then select

that class which produces the minimum Hanmming distance to the input pattern. Also,

we have introduced two kinds of input patterns, one which elements take on + 1 and

-1 values, the other + I and 0 values, for the + 1 and -1 states, respectively. Its con-

sequences on the calculation of N minus the Hamming distance were also introduced.

The next paragraph will discuss the Hamming net in further detail and illustrate how the

selection of the minimum is made.

B. OPERATION OF THE HAMMING NETWORK:

Two neural nets that are logically required to implement an optimum classifier for
binary patterns will be assembled to form the Hamming net. One net forms the weighted

20

sum to calculate quantities related to the likelihood of the different classes. The second

net picks the maximum. [Ref. 4]

The first net that forms weighted sums is presented in Figure 12. An input pattern

x is applied at the bottom of this net and an output pattern y is produced at the top.

11i-2 -I

/ - .

/ /" /

-- N-

Figure 12. Feed-fonr-ard neural net used to calculate M weighted sums from the N

elements of the input pattern [Ref. 4]

The first layer of nodes sends values of the input pattern to the links feeding the

second layer. The second laver of nodes uses nonlinear threshold logic elements to sum

weighted values of the inputs and add internal offsets [Ref. 4]. Output values from the

second layer are

. =f + wOjxC 0_j IfM-I (3-7)
i=0

where.

21

ifc >0

o if O> 0 (3-8)

In these equations.f(.) is a nonlinear function that models the nonlinearity inherent

in a biological neuron. c, is an internal offset associated with each threshold logic node,

and w, are positive or negative weights associated with the links [Ref. 4].

A number of different nets can be used to pick the maximum value from the yj out-

puts of the feed-forward neural net shown in Figure 12. In situations where it is only

important to know if the input matches a stored state very closely, it is sufficient to

identify those second-level nodes in Figure 12, with output values that exceed a specified

threshold. This can be performed by modifying the constant c, added in Equation 3-7

such that only the output of those nodes corresponding to closely matching stored states

are positive. [Ref. 4]

outputs
z zM-2 Z M-

Pe i M 2 ZM-t

y e Y IM-2 W M-1

Figure 13. The iterative neural net called "maxnet" that picks the maximum of M

inputs [Ref. 41

22

In the more general situation, a net must select the maximum over the Al3v, values.

There are many different neural net structures which perform this task. A less complex

net that uses feedback connections to pick the maximum output , (referred to as a

mnaxnet) is presented in Figure 13. [Ref. 41

Although this net is similar in structure to the Hopfield net (Figure 5), it uses

threshold-logic nodes, relative to the threshold-logic nonlinear function described in

Equation 3-8, rather than hard-limiting nodes and feeds the output of each node back

to its input instead of disallowing this feedback path. The maxnet is a fully connected

net made up of only M threshold logic nodes with internal thresholds set to zero. Input

values are applied at time zero through the input nodes on the bottom of Figure 13. This

initializes node uutputs for each node at time zero [,t,(O)] to the input values

#j(=) j = 0.1,...,M- 2,M- 1 (3-9)

The network then iterates to find the maximum using the following equation

M(I+l) = fFPr) - 4Z;it) 0 i,j M-1 (3-10)
Ii~j ...

In this equation.f is the threshold logic function described in Equation 3-8. Each

node inhibits all other nodes with a value equal to the node's output multiplied by a
small negative weight (c) which is less than -i-. Each node also feeds back to itself with

unity gain. After convergence, only that output node corresponding to the maximum

input wiii have a nonzero value. This value will generally be less than the original time

zero value of that node. The output values of the net are thus simply the node output

values after convergence :

zi = gUj(c) j= 0,1 f- 2,1f- 1 (3 - 11)

The maxnet will converge and find the maximum input when

1 (3- 12)
Al <. - 1

By convergence, we mean that the output nodes stop changing in time and only the

output of one node corresponding to the maximum input is positive. Applying the

threshold logic function f on each one of these output nodes will result in only one

23

nonzero output node, the previous positive one, and a zero value for all the others. The

nonzero node corresponds to that exemplar class which best matches the input pattern.

OUTPUT (Valid After MAJXNET Converges)

YO Y1 YM-2 YM-1

MAXIMUM

MATCHiING
SCORES

iX0 Xl N-2 XN-1

INPUT jApplied At lime Zero)

Figure 14. The complete neural netvork classifier referred to as The Hamming net

[Ref. 2]

The block diagram of the complete Hamming net, when used as a classifier, is

completed by putting together the feed-forward neural net referred to as the lower sub-

net (calculates the weighted sums) , and the maxnet referred to as the upper subnet (se-

lects the node with the maximum output value). The complete Hamming net is then as

shown in Figure 14.

C. IMPLEMENTATION OF THE HAMMING NET:

The operation algorithm of the Hamming net as a classifier can be described in four

steps which the net must follow to classify a certain input pattern. The four steps of the

algorithm are : [Ref. 21

24

Step 1. Assign connection Weights and Offsets

In the lower subnet

4
0 - 0<.i<N-l, 0<j M- 1 (3-13)

and

O -N O jM-1 (3-14)2

In the upper subnet:

t kl = 1k(3- 15)k , ;< , : OkI<_MJf- I

In these equations, w, is the connection weight from input i to node j in the lower

subnet and 0 is the threshold in that node. The connection weight from node k to node

I in the upper subnet is t,, and all threshoids in this subnet are zero. x; is element i of

exemplar j .

Step 2. Initialize with Unknown Input Pattern

/o) =f(X, - O _oix O 0<jM- 1 (3-16)

In this equation, u(t) is the output of node j in the upper subnet at time t, x, is ele-

ment i of the input, and f is the threshold logic nonlinearity. It is assumed that the

maximum input to this nonlinearity never causes the output to saturate.

Step 3. Iterate Until Convergence using Equation 3-10, this process is repeated until

convergence occurs after which the output of only one node remains positive.

Step 4. Repeat by Going to Step 2

First. weights and thresholds are set using the N elements of each one of the M

stored patterns, as shown in Step I of the above algorithm. Then a binary input pattern

25

with N bits (N = 120 elements in this implementation) is presented at the bottom of the

Hanmming net at time zero. The N bits of the input pattern were chosen to take on the

values + 1 and -1 for + 1 and -I states, respectively. This input pattern must be pre-

sented long enough to allow the lower subnet of the net to calculate matching scores

which are going to be fed to the upper subnet (maxnet) allowing it to settle and initialize

its outputs. These matching scores are equal to N minus the Hamming distances be-
tween the input and each one of the M exemplar patterns. This operation is done by

using the equation given in Step 2 of the previous algorithm. The input is then removed

and the maxnet iterates until convergence using the iteration formula 3-10. By conver-

gence, we mean that the output of only one node, corresponding to one ofthe M stored

patterns, is a nonzero value. Classification is then terminated and the nonzero maxnet

output node will point out the selected class that best matches the input pattern.

The M stored patterns used in the implementation of the Hamming net when used

as a classifier, were choosen to be similar to those used in the previous chapter; however,

here we are using 10 exemplar patterns (NI = 10) instead of 8 used earlier. The 10 stored

patterns (Figures 15 and 16) consist of 120 nodes (N - 120) each as in the previous

chapter (12 by 10 representation matrices). These 10 classes were cthoosen to represent

all digits.

..
.

. 3 .33 . . . a a

. a . .

33 .3 . .3 33.

Figure 15. The first four stored patterns

26

a a a a a . a a a

mam. .a m . a..a

a. . . .a m .a. . . .

°*°°a

.

D a. SaT O a

th la n-in etw eniti ae a a a sa a clssfir Th nu ar isam, e t e

d12it ~am a3 ptenwihnteame a shion as fo h Fofe ereesn isbt

ai a aith pi

aI l a.la 1ma1ma11

e o f a a nt s e n ae a t
a I a an a,1 1
a a . .a a1
a 1 a. . . , .a. aI

aI a Ia Ia I . . . a.. . a1

aI a Ia Ia I a . . . a, . a1

aI a a I . . . , . . . m

mama ma,. ** * mama m

aI aI 1 ,a .a . ** a** ma

aI aI aI . . . a I a a I

aI I m aa I I, . , a ama a I

aI aIaIIa ma.. aI amI

a l l l la a *, all l a

Figure 16. The rest of the 10 stored patterns

D. SIMULATION OF THE HAMMING NETWORK:

Using the Fortran program provided in Appendix B. we simulated the operation of

the l-ammring net wvhen it is used as a classifier. The input pattern is choosen to be the

digit "3" pattern which in the same fashion as for the Hoplield net. reversing its bits

randony from 4- I to -I and vice versa with the same probability (0.25).

The behavior of the Hammring net is illustrated in the output of the simulation

program provided in Figure 17.

27

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (u) REPLACES A 1 AND EVERY () REPLACES A -1:

-I -I-i 1 1 1 1 -1-1 1 . • U U U U

-1 1 -i 1 1 1 1 1 1 1 U U U U I U U

1 -1 -1-1 1-1 -1 1 -1 -1 U * E. U

-1 -1 -1-1-1 1-1 -1 1 -1............. *

-1-1 1-1 1 1 1 1 -1 -1i U " U U U

-1 -1 -1 1 -i -1 -1 -1 1 1 . • U•

-I1-1-1 1 -1 -1-1 1 -1 -1

1 1 1 1 1 -I 1---1 "i U U U U "

THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM REPRESENTS THE
OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIONS:

'1UMB. OF ITERATIONS= 1 2 3 4 5 6 7 8 9 10

FOR CLASS 0: 59 5 0 0 0 0 0 0 0 0
FOR CLASS 1: 73 20 5 0 0 0 0 0 0 0
FOR CLASS 2: 71 18 3 0 0 0 0 0 0 0
FOR CLASS 3: 89 38 25 21 19 18 17 16 16 16
FOR CLASS 4: 63 9 0 0 0 0 0 0 0 0
FOR CLASS 5: 75 22 7 1 0 0 0 0 0 0
FOR CLASS6: 65 12 0 0 0 0 0 0 0 0
FOR CLASS 7: 75 22 7 1 0 0 0 0 0 0
FOR CLASS 8: 79 27 13 8 5 3 1 0 0 0
FOR CLASS 9: 77 25 11 6 3 1 0 0 0 0

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK
CORRESPONDS TO THE PATTERN STORED OF THE CLASS THREE.

Figure 17. Response of the Hamming net to the first input pattern

2S

For more clarity, ,ve are going, to illustrat- the behavior of the Hammirin2y net in the
following plots. Each plot corresponds to the output of the net at the corresponding time
step from time zero until its convergence.

C.,

-N

001 08 09 04 09 Og 0

3 (IVA MlON LfId.LfIO SSVIJ3

Figure IS. The output of the Hamming net at t =I for digit "3"

29

VI

-C.

W(YIVA MUON Lld.LfO SSVID

Figure 19. The output of the Hamming net at t = 2 for digit "3"

30

0 i P0 T z-010

3[TIVA H1UON LfIdJJf1O SSV'13

Figure 20. The output of the Hamming net at t = 3 for digit "3"

0

opc O' 0 t 0
3fYIVA HQON JJ~dLLflO SSVIJ

Figure 21. The output of the Hammiing net at t =4 for digit "3"

-. <

I I

o0 oc oz of 0
3flIVA 3UON ,fldlflO SSV'ID

Figure 22. Tie output of the Hamming net at t = 5 for digit "3Y

33

3flIVA MUON LfdIflO SSYVI3

Figure 23. The output of the Hamming net at t = 6 for digit "3"

3.4

<- cv

0), OcOz of0

3n'IA MN IfdJLIO SV'0

Ficue 2. Te ouputof he ammig nt a t 7fordigt "

35,

- J

oo o00 or 0
3L"IVA SaON .LfldJflO SSV tIJ

Figure 25. The output of the Hamming net at t = 8 for digit "3"

As you can see, the net has effectively converged to the correct class corresponding

to digit '3' and only S iterations were required to do so. By convergence. we mean that

36

the output nodes stop changing in time steps, and only the output of one node is a

nonzero value. In our case, it was the output node of class 3. We say that the net has

converged to the class that best matches the input pattern which is given by the position

of' the nonzero output node within the others. Further iterations will not change the

output node values.

The proof of convergence depends primarily on the fact the inhibition to the node

containing the maximum value, in our case it was the node corresponding to class 3',

is always less than the inhibition to other nodes. This explains the fact that all output

node values were decreasing on successive time steps. The output node values of those

classes that are close to the input pattern were decreasing in time, but not in the same

fashion as the classes that are totally different from the input pattern which were de-

creasing faster. At convergence, the inhibition to the node with the maximum value re-

duces to zero. [Ref. 4]

inhibj(t) = ZtuI(t) (3 17)

where. inhib,(t) is the second term of the right hand side of Equation 3-10, u,(t) is the

output of node i at time t and t,, is the inhibition weight between nodes in the upper

subnet and it's given by the following formula,

t~j 1 < i < - I(3 -18)
- ~ J 0:, ij! .1- j, I '"'

Node 3 corresponds to the maximum input, then on the first iteration, the inhibition

to this node was less than the inhibition to all other nodes. This follows because all node

outputs are positive and the sum of all outputs, excluding one in Equation 3-17, will be

minimum when the maximum is excluded. Node 3 thus remains the maximum after the

first iteration. By induction. it will remain the maximum over all iterations and it re-

sponded as expected. [Ref. 4]

The remainder of the proof of convergence depends on demonstrating that the out-

put of node 3 is never driven to zero, but the outputs of all other nodes are. When

Equation 3-12 is satisfied, inhib(t) is always less than the average value of all other node

outputs. The inhibition to node 3 will thus be less than the average of the output of all

nodes. Whenever a maximum exists, this inhibition will always be less than the current

37

output of node 3 because the maximum of a set of positive numbers is always greater

than the average. The output of node 3 will not be driven to zero while any other nodq

have nonzero outputs. After all other node outputs are driven to zero, the inhibition to

node 3 drops to zero, and the output of node 3 remains constant. The output of all other

nodes will always be driven to zero because the inhibition to these nodes remains posi-

tive on all iterations and approaches a positive constant as time increases. In practice,

the maxnet will still converge and find the maximum when each weight w,, is set to
MI- 1 plus a small random component. This forces the net to find a maximum when

the inputs to all nodes are identical. As a matter of fact, this discussion can be general-

ized to all input patterns. [Ref. 4]

Then, we presented another input pattern which is of the digit "9". This pattern was

noise corrupted in similar fashion as for digit "Y'. The purpose of this simulation was to

see if the net will behave as discussed earlier and if the number of iterations necessary

for a successful convergence is function of the input pattern and how much noise dis-

turbed it is. So, for the noisy pattern of digit "9", the response of the net is as provided

in Figure 26.

For more clarity, we are going to illustrate the response of the net in the following

graphs for successive iterations. Each plot corresponds to the response of the net at the

corresponding number of iterations, where the class out)ut node values are decreasing

from an iteration to the next. By inhibition, all of them will be driven to zero, some faster

than others, except for the class output node corresponding to that to the stored

exemplar that best matches the unknown input pattern. Then, this output node value

will remain constant throughout future iterations while the zero valued output nodes

will remain at zero.

38

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (u) REPLACES A 1 AND EVERY () REPLACES A -1:

-1-1-1 1 1 1- 1- 1.

-1 -i11-11 1 -1 -1 1-1i U * U U•
-1 -1 - 1 -1 1 1 1 1 1 * • * U • • U

1 1 -1-1 1-1 -1 1 1 -1i U • U

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

11 1i-1 -i1-1-1-i 1 1 * • • U

-1 -1-1-1 -I 1-1 1 1 1............ " U U"

-i1-I-i1-1 1 1 1 1 1 1 " U U U U "

THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM REPRESENTS THE
OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIONS:

NUMB. OF ITERATIONS= 1 2 3 4 5 6 7 8 9 10

FOR CLASS 0: 48 0 0 0 0 0 0 0 0 0
FOR CLASS 1: 58 10 0 0 0 0 0 0 0 0
FOR CLASS 2: 60 12 0 0 0 0 0 0 0 0
FOR CLASS 3: 74 27 15 9 5 2 0 0 0 0
FOR CLASS 4: 72 25 12 6 2 0 0 0 0 0
FOR CLASS 5: 72 25 12 6 2 0 0 0 0 0
FOR CLASS 6: 52 4 0 0 0 0 0 0 0 0
FOR CLASS 7: 66 19 6 0 0 0 0 0 0 0
FOR CLASS 8: 58 10 0 0 0 0 0 0 0 0
FOR CLASS 9: 90 45 34 30 28 27 26 26 26 26

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK
CORRESPONDS TO THE PATTERN STORED OF THE CLASS NINE.

Figure 26. Response of the Hamming net to the second input pattern

39

F'-

C,.

001 00 Og OIL 09 Og 0
3LILYA M1ON Lfld.lflO SSVIJ

Figure 27. The output of the Hamming net at t = I for digit "9"

40

09 0v O 0 ? of0

:IfIVA 3OM JlciJflO ST.

Fiaue 2. Th ouputof te Hmmig ne att 2for igi "9

41/

0

421

CO

OP 0010 0
3f1YIVA TION ILf~diF1O SS~TIJ

Figure 30. The output of thle Hamming net at t =4 for digit "9"

-43

25 t5

-0D

c12

-N'

0~ O'Or ' 0 0

fLYIVA MUON £fldiflO SSWI9

Figure 31. The output of the Hamming net at t = 5 for digit "9"

t/2

I 0n

31YIYA MaON JfldJLflO SSV1J

Figure 32. The output of the Hamming net at t = 6 for digit "9"

V)

C.,
- C

OC 00C 0z 0
WfYIVA 3ON ,IfIdIfIO SSVID

Figure 33. The output of the Hamming net at t = 7 for digit "9"

These graphs have proven once more. the net's mechanism of convergence described

earlier. After 7 iterations, the net has effectiveiy converged to the correct pattern ofdigit

46

"9", which output node was the only nonzero node while all the others were driven to

zero by the convergence process of the Hamming net. Then, seven iterations were used

to converge to digit "9" in comparison to eight to recognize digit "3". These simulations

were for noise-corrupted input patterns, now we resimulated the net but this time using

the perfect pattern of digit "2". The response of the net is provided in Figure 34.

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (*) REPLACES A 1 AND EVERY () REPLACES A -1:

1 1 1 1 1 1 1 1 -1-1 " U " U U I U "
1 1 1 1 1 1 1 1 -1 -1 U U U U U " U

-1 -1 -1 -1 -1 -1 1 1 -1 -1.............. "
1 1 1 1 1 1 1 1 -1-1 * * * " " " * *
1 1 1 1 1 1 1 1 -1 -1 " U U U U U U

1 1 -1 -1 -1 -1 -1 -1 -1 -1 *
1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 -1 -1 -1 -1 -1 -1 -1 -1 " "
1 1 1 1 1 1 1 1 -11i " a * u * * *
1 1 1 1 1 1 1 1--1 "i * * * * * * *

THE OUTPUT OF THE HAMIING NETWORK, WHERE EACH COLUNM REPRESENTS THE
OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIONS:

NUMB. OF ITERATIONS= 1 2 3 4 5 6 7 8 9 10

FOR CLASS 0: 56 0 0 0 0 0 0 0 0 0
FOR CLASS 1: 66 9 0 0 0 0 0 0 0 0
FOR CLASS 2: 120 67 54 49 47 46 45 45 45 45
FOR CLASS 3: 84 28 12 4 0 0 0 0 0 0
FOR CLASS : 64 7 0 0 0 0 0 0 0 0
FORCLASS5: 84 28 12 4 0 0 0 0 0 0
FOR CLASS 6: 90 35 20 12 7 3 0 0 0 0
FOR CLASS 7: 80 24 8 0 0 0 0 0 0 0
FOR CLASS 8: 78 22 6 0 0 0 0 0 0 0
FOR CLASS 9: 54 0 0 0 0 0 0 0 0 0

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK

CORRESPONDS TO THE PATTERN STORED OF THE CLASS TWO.

Figure 34. Response of tile Hamming net to the perfect input pattern

47

Even for the perfect input pattern of digit "2", the net took 7 iterations to success-

fully converge to the correct response. So, the number of iterations is definitly not

function of the input pattern and how noise disturbed it is but with how many stored

patterns it shares many similarities (almost same distribution of + 1 and -I). The num-

ber of iterations necessary for a successful convergence depends on the output node

values at the first iteration. The bigger magnitude these values have, the more similar

their respective patterns are to the input and the more iterations will be necessary to

drive them to zero by inhibition except for the correct output node.

In our last simulation with digit "2" as a perfect input pattern, after the fourth iter-

ation, only those output nodes corresponding to class "2" and class "6" were the only

nonzero valued nodes. We can conclude, from this, that the input pattern, after tile

fourth iteration, is very close to the patterns of digit "6" and "2". but more closer to "2"

than "6" because of its higher output node value. The network took two more iterations

to drive the output node of the "6" to zero. Then, the inhibition to node "2" drops to zero

and the value of its output node remains constant. The input pattern is said to be digit

"2" pattern.

This discussion can be generalized to explain the previous behavior of the network

to digit "3" and digit "9" as input patterns. In all cases, the output node with the higher

magnitude, after the first iteration is completed, is always the correct node but the con-

vergence mechanism of the net is not to make decisions at this stage.

48

IV. THE CARPENTER / GROSSBERG NET

A. GENERALITIES:

Classified as a self-organizing neural net, the Carpenter / Grossberg net self-
organizes and self-stabilizes its recognition codes in response to arbitrary sequences of

binary input patterns. Top-down attentional and matching mechanisms are critical in
self-stabilizing the code learning process. The architecture embodies a parallel search
scheme which updates itself adaptively as the learning process proceeds. After the

learning process has self-stabilized, the search process is automatically disengaged.
Thereafter, input patterns directly access their recognition codes without any search.

Thus, recognition time does not grow as a function of code complexity.
A novel input pattern can directly access a category if it shares invariant properties

with the set of familiar exemplars of that category. These invariant properties emerge in
the form of learned critical feature patterns, or prototypes. The architecture possesses a

context-sensitive self-scaling property which enables its emergent critical feature patterns
to form. They detect and remember statistically predictive configurations of featural el-
ements which are derived from the set of all input patterns that are experienced. Four

types of attentional processes (priming, gain control, vigilance, and intermodal compe-
tition) are mechanistically characterized. Top-down priming and gain control are needed
for code matching and self-stabilization. Attentional vigilance determines how good the

learned categories will be. If vigilance increases due to an environmental disconfirma-
tion. then the system automatically searches for and learns the best recognition catego-

ries. [Ref. 61
This chapter develops a theory of how recognition codes are self-organized by a

class of neural networks whose qualitative features have been used to analyse data about
speech perception, word recognition and recall, visual perception, olfactory coding,
evoked potentials, thalamocortical interactions, attentional modulation of critical ter-

mination. and amnesia. These networks comprise the adaptive resonance theory (ART)

characterized as a system of ordinary differential equations.

B. IMPLEMENTATION OF THE CARPENTER / GROSSBERG NET:

The neural network that will be discussed in this chapter is known as an ART sys-

tem, after the adaptive resonance theory introduced by Grossberg [Ref 7]. see Appendix
C. Recently, ART networks have been further studied and their dynamic properties

49

have been derived in a series of theorems. These theorems predict both the order of

search, as a function of the learning history of the net, and the asymptotic category

structure self-organized by an arbitrary binary input sequence.

The operation of the ART system discussed in Appendix C will be used to develop

a neural net known as the Carpenter ' Grossberg net, using neural net components,

which will form clusters and is trained without supervision. The net can learn from input

patterns and later differentiate between new and stored (learned) patterns. If the new and

unknown input pattern is classified as a previously learned pattern at a certain level of

vigilance, it will be ignored, but if it is not, it will be added as a new pattern by the net.

This process is repeated for all input patterns. The number of learned patterns thus

grows with time and depends strongly on the level of vigilance (threshold) used to com-

pare input patterns to the ?!ready stored ones.

The operation of the Carpenter : Grossberg net which forms clusters (learned pat-

terns) and is trained without supervision is given in eight steps : [Ref. 2]

Step I. Initialization

tu(O) = 1 (4-1)

bi(O) - + " (4-2)

i_ - I , O<j< f- I

Setp, 0<p l.

In these equations b,.(t) is the bottom-up and tj(t) is the top-down connection weight

between input node i and output node j at time t as shown in Figure 35. These weights

define the exemplar specified by output node j. The fraction p is the vigilance threshold

which indicates how close an input must be to a stored exemplar to match.

Step 2. Apply New Input

Step 3. Compute Matching Scores

Ot=-bij(t) xl 0j<sI- 1 (4-3)
i=O

50

In this equation u,, is the output of node j and x, is element i of the input pattern

which can be 0 or 1.

OUTPUt

YO YJ

x0 xl x 2

INPUT

Figure 35. The major components of the Carpenter / Grossberg classification net

[Ref. 2]

Step 4. Select Best Matching Exemplar

= max ({u} (4-4)
J

This is performed using extensive lateral inhibition as in the maxnet.

Step 5. Vigilance Test

v-I
II.xlp Z-xt (4 -5)

v-iX i (4-5)

51

is 11T*All > p? (4-7)

If YES then GO TO Step 7, otherwise GO TO Step 6

Step 6. Disable Best Matching Exemplar

The output of the best matching node selected in Step 4 is temporarily set to zero

and no longer takes part in the maximization of Step 4. Then go to Step 3.

Step 7. Adapt Best Matching Exemplar

Io(I + I) = (t) x! (4-8)

h +.(+ 1) = - -- (4-9)

'I-

0.5 + Y'.Zu.(t) xi
1=0

Step 8. Repeat by Going to Step 2

(First enable any nodes disabled in Step 6)

After initialization of the net and presentation of an unknown input pattern,

matching scores are computed using feed-forward connections. The node corresponding

to the exemplar with the highest matching score is selected using lateral inhibition

among the output nodes as in the maxnet (Hamming net). where each output node

corresponds to a stored exemplar. This net differs from the Hamming net in that feed-

back connections are provided from the output nodes to the input nodes and elements

of both inputs and stored exemplars take on only the values 0 and 1.

The selected exemplar, from the highest matching score, is then compared to the

input by computing the ratio of the dot product of the input and the best matching

exemplar (number of I bits in common) divided by the number of I bits in the input. If

the ratio is greater than a threshold value (vigilance) which was set at the initialization

of the net (Step 1 of the algorithm), then the input is considered to be similar to the best

matching exemplar and that exemplar is updated by performing a logical AND opera-

tion between its bits and those in the input. On the other hand, if the ratio is less than

the vigilance threshold, the output node with the highest matching score is temporarily

52

set to zero, disabled by provided mechanisms. The same input pattern is presented again

to the net for another test. The cycle continues until one stored exemplar matches the

input or this pattern is considered to be different from all stored exemplars and it is

added as a new one. Generally, when the first test fails the input is a new exemplar. Each

additional exemplar requires one output node and 2N connections to compute matching

scores.

The vigilance threshold, which ranges between 0.0 and 1.0, determines how close a

new pattern must be to a stored exemplar in order to be similar. A value near 1.0 means

a close match is necessary and smaller values accept a poorer match.

C. SIMULATION OF THE CARPENTER / GROSSBERG NET:

Using the Fortran program provided in Appendix D, we simulated the behavior of

this net. For this simulation, a vigilance threshold of 0.9 was choosen, which means that

an input pattern must be very close to a stored exemplar to be considered similar. The

patterns used in this simulation were of the letters "C", "E", "F" and were choosen to be

of 64 element representation (matrices of 8 by 8). In all the figures provided in this

discussion, we have made a black pixel to correspond to an element of value 1 and the

white pixel for the value of 0. The actual input patterns used are provided in Appendix

D.

Initially, the storage memory of the net was empty. To train this net, an input pat-

tern representing the letter "C" was presented first and it was automatically stored as the

net starts to learn. Now internal connection weights of the net are altered to form an

internal exemplar that is identical to the letter "C" and we have the first output node of

the net. In the samc fashion. every learned pattern will be stored as 2N connection

weights and one output node is added to the net. These 2N connections weights will

form an internal exemplar for the respective pattern stored.

53

In the storage memory of the net, we have only one stored exemplar

Bmm

a U

* 9

After, an input pattern representation of the letter "E" was applied. The response

of the net to this input was :

BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTERN STORED. THIS INPUT PATTERN IS
THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR PATTERN.

Here "E" was compared to "C" as described in Step 5 of the clustering algorithm of

the net and since the ratio was less than the vigilance threshold we now have two stored

exemplars.

For a new input pattern representation of the letter "7", the response of the net was

the same as for "E"'. Here the input pattern was compared to both stored exemplars, but

at all times the ratio was less than the vigilance threshold. The input pattern of "F'" is

then added as a new exemplar leading to three stored patterns.

2 5

am n @on s@.

* 54

At this point, we will try something different. We will present a noisy version of the
letter "F" with a missing black pixel in the upper edge as shown in Appendix D. The

reaction of the net was :

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTERN IS CONSIDERED TO
MATCH A STORED PATTERN WHICH IS UPDATED BY
PERFORMING A LOGICAL 'AND' OPERATION BETWEEN
ITS BITS AND THOSE OF THE INPUT PATTERN, AND
THE NEW UPDATED PATTERN WILL LOOK LIKE:

UU mmi

In this part of the simulation, the input pattern is found to match the stored

exemplar of -F" because the ratio of the vigilance test was found greater than the vigi-

lance value, i.e.. the two patterns have many' elements in common. The result was a

degraded "° due to the AND operation performed during the updating. N\owv in the

memory of the net we still have three patterns with some changes in the pattern of the

letter "I"'"

Presenting an even more noisier version of the pattern of 7'" given in Appendix D,

the reaction of the net was :

BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTfERN STORED. THIS INPUT PATTERN IS
THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR.

1- ere the input pattern was compared first to the stored pattern of the noisy "F", but

the ratio was less than the vigilance value. Then it wvas compared to the other stored

55

exemplars. one in each cycle, but the ratio was still less than the vigilance value. The

input pattern is then considered different from existing exemplars and it is added as a

new one in the memor of the net. At this point, we have four stored patterns

wao eo man m Emmon.

These results illustrate the inaccuracies of this net in a noisy environement. For a

vigilance value of 0.9, we took a stored pattern and changed some of its elements simu-

lating the presence of small amount of noise in the channel. Then, presenting it again

as an input pattern has made the net take it as a new pattern to be stored with the cor-

rect version. Besides the noise, the value of the vigilance test can also alter the behavior

of the net as we are going to show. Using the same input pattern sequence as before,

we are going to simulate the clustering algorithm of the net, but this time with 0.7 as the
vigilance threshold. Starting by presenting the pattern of the letter "C" as the input, the

net automatically stored it in its empty memory as the net stats to learn. Now internal

connections weights of the net are altered to form an internal exemplar that is identical

to the letter "C".

In the storage memory of the net, we have only one stored exemplar

owns$

Then, an input pattern representing the letter -E- was presented to net. The response
of the net was:

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTIERN IS CONSIDERED
TO MATCH A STORED PATTfERN WHICH IS UPDATED BY
PERFORMING A LOGICAL 'AND' OPERATION BETWEEN
ITS BITS AND THOSE OF THE INPUT PATTERN, AND

56

THE NEW UPDATED PATTERN WILL LOOK LIKE:

oes.

2

Here, comparing the input pattern "E" to the stored "C" as described in Step 5 of the

clustering algorithm. The ratio was found greater than the vigilance value (0.7). The re-

sult was a degraded "C", as shown, due to the A\D operation performed on its bits

during the updating. In the memory of the net, the degraded pattern of "'C" is stored

instead of the initial pattern. 'Now we still have only one stored pattern.

For the pattern of the letter -F"- as an input! thi: net responded with the following

message:

BECAUSE, THE RATIO WAS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTERN STORED. THIS INPUT PATTERN IS
THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR.

After comparing the input pattern of "F" to the stored and degraded pattern of "C"

as in the vigilancc test, the ratio was found to be less than the vigilance threshold %Nhich

results in another stored pattern

Now, we are going to present the noise corrupted pattern of"F". The net's response
wa s:

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTERN IS CONSIDERED
TO MATCH A STORED PATTERN WHICH IS UPDATED BY

57

PERFORMING A LOGICAL 'AND' OPERATION BETWEEN
ITS BITS AND THOSE OF THE INPUT PATTERN, AND
THE NEW UPDATED PATTERN WILL LOOK LIKE:

The matching pattein was of the leucr F". At this point, checking the net's memory,

will reveal the storage of the two patterns:

Presenting a more corrupted pattern o. "Y, the response of the net was as before.

The input pattern was found similar to the first corrupted version of "FY (the ratio was

greater than the vigilance threshold). The stored pattern of the corrupted 7'" was again

more disturbed after the AND operation was performed between its bits and the input

pattern. The result. once again, replaced the previous version of the corrupted -'F in the

memory" of the net :

The results of the two simulations show clearly how the noise and the vigilance

threshold can affect the performance of the Carpenter ,, Grossberg net. We have seen the

net performing well for perfect input patterns and when adding a small amount of noise

it behaves totally different. With no noise. a lower vigilance value can make the net

58

consider two different pattern to be similar. We have seen this in the second simulation

when we have presented the pattern "E", which was mistakenly considered similar to "C"
for 0.7 vigilance. On the other hand. a hieher vigilance threshold can make the net con-

sider two patterns. which are most similar, to be different. Thus, this net should not be

used in a noisy channel with a high vigilance value; otherwise, the number of stored

patterns will grow rapidly in time as input patterns are continuously presented until all

available nodes are used up. A proportional adaptation of the vigilance threshold to the

existing noise in the channel can make the net to perform perfectly during training and

testing,

59

V. NEURAL NETWORK AS A BINARY MAXIMUM-LIKELIHOOD

SEQUENCE ESTIMATOR

A. GENERALITIES:

Bandwidth-efficient data transmission over telephone and radio channels is signif-

icantly improved by the use of adaptive equalization to compensate for the time

dispersion introduced by the channel.

During the last two decades, a steady research efert has produced a rich body of

theory in the field of adaptive equalization and the more general field of adaptive re-

ceivers. From this work. a class of nonlinear receivers referred to as maximum-likelihood

sequence estimation receivers have emerged as front-runners with respect to error rate

performance. However, the high degree of computational complexity of the optimal

maximum-likeli!'ood receivers has prohibited their use in many applications. It will be

shown that neural networks can be used to implement the maximum-likelihood sequence

estimation and that the networks offer an attractive alternative for implementation.

[Ref. 3]

Intersymbol interf.:rence caused by the bandlimiting effect of the channel is re-

viewed. A maximun-likelihood receiver designed to detect data symbols in the presence

of intersvmbol interference and additive Gaussian noise is considered and the theory

behind maximum-likelihood sequence estimation is reviewed.

The maximum likelihood sequence estimation function is mapped onto a neural

network structure. A neural network based receiver structure will be described which can

be used for stationary or time-varvin g channels. The MLSE neural network will be sim-

ulated on the .Mainframe and some results of its simulation will be presented.

B. MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION:

Consider a baseband synchronous data communication link used to transmit a se-

quence of numbers called data or information symbols, denoted by

{... , a,- , ai , a1+ ,

The symbols are independent and can, with equal probability, be either + I or -I.

Let \I be the number of data symbols in a transmitted sequence and assume

60

transmission starts at time t = 0 and ends at time t = MT. The receiver will observe the

signal y(t) during the time interval starting at t = 0 and ending at r = t,, where

t1 > (NI + L) T

where L is the channel memory in units of T.

Denote the time inteval 0 - t by I,. By its definition, a maximum-likelihood re-
ceiver determines {P4 as the best estimate sequence (a.) that maximizes the likelihood

function p[y(t) , t e I, I {a}] given by

pL(t), t II {a,)] - exp { f rf n(t, I {a,)) K (t, - t2) n(t2 I {a,,)) dt dt2}(5 1)

where K;'(t) is the inverse of the noise autocovariance function K(t) and

n(tI {an}) = '(t) - Z ak h(t - KT) (5- 2)
k=1

where h(t) is the impulse response of the matched filter used in the adaptive maximum-

likelihood receivers (Figure 36). Rearranging Equation 5-2,

M

y(t) = I a h(t - KT) + n(t I {a,}) (5-3)
k=1

A block diagram of an adaptive maximum-likelihood receiver for the data trans-

mission model described by Equation 5-3 is illustrated in Figure 36.

Y M. SEQUE-NC ESr'LMAToIL

C, 0 ~ E 1C

ESIIMAIOR
,7' ,,]

Figure 36. Adaptive Maximum-Likelihood Receiver [Ref. 3]

61

The impulse response of the matched filter in Figure 36, designed to improve the

signal-to-noise ratio, is given by

g(t) = h(-t) * I§'(t) (5-4)

where * denotes the convolution function. Substituting Equation 5-2 into Equation 5-1,

expanding the terms in the braces and considering only terms that depend on (a,}, yields

pin(t) I {a,}] - exp 2 ai zi - ai si- k ak (5-5)
i=1 k=1

where.

z= J Fh(t - nT) K-1 -t2)y(t2) dt dt2 (5-6)

s = , f , - ifl K -1 (t - 12) h(t 2 - K)d l dt2 (
44(5 -7)

=s 1 1= k-i

and

h() h(-t) (5 - 8)

The quantities z, and s, can be interpreted as sample values taken at the output of

the matched filter, where z, is obtained by sampling the output z(t) of the matched filter

once every T seconds and s, 's account for the combined response of the transmission

channel and matched filter. The s,,'s are symmetric and s, = 0 for III > L. [Ref. 81

Under maximum-likelihood criteria, the estimated sequence is that for which ex-

pression 5-5 is maximized. Since 5-5 is monotonically increasing function of the term in

braces, given by

M M tl

JM({an}) = zi - Z Ia-iskak. (5-9)
6=1 2

62

maxinzing Equation 5-5 is equivalent to maximizing Equation 5-9. The notation

J.,({a) indicates the cost function for the sequence a, , a2, ... , a. Equation 5-9 will be

referred to as the MLSE cost function. [Ref. 31
The estimation procedure using direct evaluation of the MLSE cost function re-

quires that Equation 5-9 be evaluated for all the possible sequences of length M that can

be formed from data symbols + 1 and -1. Thus Equation 5-9 must be evaluated 2-1

times to obtain an estimate of the sequence {a.}. To perform the estimate in real time,

which is required by most communication links, the 2,M computations of Equation 5-9

must be performed in NIT seconds. In most cases, direct evaluation of ti.- MLSE cost
function is too computation intensive to be of practical use. [Ref. 31

The number of computations required can be greatly reduced by the use of the

Viterbi algorithm [Refs. 8.9]. which requires on the order of 2L-1 multiply-and-add oper-

ations during each signaling inteval T.

C. NEURAL NETWORK:

Any neural network has, as discussed before, parallel input channels, parallel output

channels and a large amount of interconnections between the neural processing ele-

ments. Figure 37 illustrates the general structure of a Hopfield neural network. The

processing elements (nodes), or neurons, are modelled as amplifiers in conjunction with

feedback circuits comprised of wires, resistors and capacitors organized so as to model
the most basic computational features of neurons, namely axons, dendritic arborization

and synapses connecting the different neurons. [Ref 101

The model considered here for implementation of the MLSE neural network is that

due to Hopfield and Tank [Ref. 3].
The amplifiers have sigmoid monotonic input-output relations, as shown in Figure

37. The function (it) = g [u(t)] which characterizes this nonlinear input-output relation

describes the output voltage v(t) due to an input voltage u(t). The time constants of the

amplifiers are assumed negligible. However, like the input impedance caused by the cell

membrane in a biological neuron, each amplifier j has an input resistor p, leading to a

reference ground and an input capacitor c,. These components partially define the time

constants of the neurons and provide for integrative analog summation of the synaptic

input current from other neurons in the network.

In order to provide for both excitatory and inhibitory synaptic connections between

neurons while using conventional electrical components, each amplifier is given two

outputs. a normal (+) output and an inverted (-) output.

63

_______ IS I I

inplits

Il 12

I VI I

W22

outputs

r reglon -

-- -.- -- - -l- fi r

I I -I

(t) /) ,1 ,

TI V(f) I a

Ifl irl vertirig if)Tri ting o I a
oiit~tiit ou Lpa[I

- + U(I)
,(I) = dI

Figure 37. Hopfield Neural Netork [Ref. 31

The minimum and maximum outputs ofthe normal amplifier are taken as (0 and 1.

while the inverted output has corresponding values of 0 and - I. A synapse betmcen

64

neurons is defined by a conductance w, which connects one of the two outputs of am-

plifier j to the input of amplifier i. This connection is made by a resistor of value

R,, . If the synapse is excitatory (w, > 0), this resistor is connected to the

normal (+ output of amplifier j. For an inhibitory synapse (i, < 0). it is connected to

the inverted (-) output of amplifier j. The matrix w, defines the connectivity among the

neurons. The net input current to any neuron i (and hence the input voltage u,) is the

sum of the currents flowing through the set of resistors connecting its input to the out-

puts of the other neurons. [Ref. 9]

The set of differential equations describing the dynamics of the neural network

shown in Figure 37 with N1 neurons are given by

du(t) - ik v(t) + I i= 1 ... , M (5-10)

where v.(t) = g, [u,(t)] and R is the parallel combination of pi and the R,, 's. and C, is the

capacitance of amplifier j.

3f
SI + 1 i .. (5- 11)

R i ,pi Rij

j=1

For simplicity, we assume that g,[.] = g[.]. R, = R and C, = C, independent of i.
W~k Iz

Dividing Equation 5-10 by C and redefining wk = - and I, = -, the equations of

motion become

dt -l. ik vk(t) - r + Ii i = I ... , (5- 12)

k=1

where r = RC is the time constant of the circuit. [Ref. 91

In the Hopfield net operation, it was shown that the equations of motion for a net-

work with symmetric connections (w, = wi) always lead to a convergence to stable

states, in which the outputs of all neurons remain constant. Also, when the width of the

amplifier gain curve in Figure 37 is narrow, the stable states of a neural network com-

prised of %I neurons are the local minima of the quantity

65

'. M A!

E = - !- V() (5-13)
i--1 i=-- k=1

When high amplifier gain is used, the minima occur only at the corners of an M-
dimensional hypercube defined by v, = + 1 or -1.

D. MAPPING OF MLSE ONTO A NEURAL NETWORK:

Maximizing the MLSE cost function described by Equation 5-9 is equivalent to

minimizing the following expression

4 M M

j - 2 aj zi + Zyai S-k ak (5 -14)

1=1 j -

where a,'s (of only + I and -1) values which minimize Equation 5-14 are unknown. The

z,'s and s,_,'s are known. Comparing Equations 5-13 and 5-14 and equating variables

aq follows

2zi = I , -2Sik = Wik, al = i(t)

reveals that the two expressions are identical under these substitutions. From Equation

5-7. we recall that s, = s_,. Therefore,

iik = -2 Sik = -2 Sk! l = Wki

which satisfies the synaptic interconnection symmetry condition. The synaptic intercon-

nections for the neural network are determined by the coefficients which describe the

combined response of the channel and matched filter. Let W denote a matrix of synaptic

connections w,,. Then the synaptic connection matrix W for the network is given in

Figure IS.
The externally supplied input current for each neuron, I,, is determined by observa-

tion z, , I < i < M. With the input voltage u,(t) initially at zero, the input sequence is

applied to the network. After the network settles the estimated sequence {&,} is read from

the output of the neural amplifiers. A diagram of the MLSE neural network is shown in

Figure 39. [Ref. 31

66

-2io -2: .. -2si, 0 0 0 0 ... 0
-211 -2ao -2it ... -

2
AL 0 0 0 ... 0

-202 -2s, -2so -2m 1 ... 0 0 "" 0

0 .. 0 0 0 0 -2.s ... -2as -2,o Mx Af

Figure 38. MatrLx of synaptic connections [Ref. 3]

2 2.f 2
Z,..-I 2za

NEURIAL NETWORK
INTEICONNECTIONS: W,'s

Nu NMJ4-1 N,

t
2Af am-I at

Figure 39. MISE neural network [Ref. 3]

This development assumed that the transmission channel is stationary, which im-

plies that the s's describing the combined channel and matched filter response do not

chance with time. Often. this is an unrealistic assumption. [Ref. 3]

The MLSE cost function given bv Equation 5-14 can be written for the time-varying

channel as

67

Mf A M

i=-1 i-- k=1

From Appendix E and using Equation 5-15, the parameters for the MLSE neural

network are given by [Ref. 3]

2zj = 11 -2 s -k = - (4 2 k + = wik, a! = v(t) (5-16)

E. NEURAL NETWORK MAXIMUM-LIKELIHOOD RECEIVER:

A block diagram of the adaptive maximum-likelihood receiver incorporating the
neural network for MLSE is shown in Figure 40. Registers R, , R2, ... R, R form a shift

register used to store the M observations. With all amplifier inputs u,, i = 1, ... , A,

initially at zero, switches Si, , i = 1, ... , M, are simultaneously closed and the network

is allowed to settle. The output of each neural amplifier is applied to the input of a de-

cision device which outputs a + 1 or -1 for a positive or negative inp-,t respectively.

Once the network has settled, the estimated sequence is read at the output of the deci-

sion devices as shown in Figure 39. [Ref. 3]
In some cases, the length of the network, M, will be considerably less than the total

number of data symbols in a transmitted sequence. For example, suppose the transmit-

ted sequence consists of K x .1 data symbols, one approach is to load the first set of NI
observations and estimate the corresponding data symbols. After the estimate is ob-
tained, the second set of observations would be loaded and the second set of data sym-

bols estimated. The procedure would be performed a total of K times to obtain an
estimate of the entire transmitted sequence. The primary problem with this approach is

that it does not take into account the truncation of the observation sequence. [Ref. 3]
The effect of the truncation can be described by considering the role of the obser-

vations in the estimation. Let z,"), 1 < k < .1, denote an observation applied to the ex-

ternal input of neural amplifier k, where z,' is the i" observation from the received

sequence.

68

2 2 x -2 x

SWMp JW4- ISW,

IM ____________it

I INTERlCON~NECTIONS: Wa's

nT $

Figure 40. Neural Network Based Maximuni-Likelihood Receiver IRef. 3]

Since the channel memory is L. all information concerningz the identity. of data

s-ymbol a is contained in observations: [Ref'.3

69

(k-L) Z(k-L+l) (k+L)

Z-L i-L+ ' ZI+L

for k in the interval

L < k <M-L+1 (5-17)

All the observations containing information about the data symbol estimated by

neural amplifier k are available to the network. On the other hand, for k in the intervals

I l_ k < L & M-L+I < k _< M (5-18)

some of the observations containing information about the data symbol estimated by

neural amplifier k arc not available to the network. Therefore, one would expect more

errors to occur in estimates a") for k in the interval given by Equation 5-18 than in the

interval given by Equation 5-17. [Ref. 31

This problem can be solved by overlapping the sequences used for each estimation

iteration. Assume a set of M observations have been received and the network has

produced a set of M data symbol estimates. Rather than accept all M estimates as valid.

only estimates from neurons L-t- 1 through M-1 are taken as valid. This, of course. cor-

responds to the estimates based on complete information about the symbols being esti-

mated. From this set of observations, the observations in shift registers M, Mi-l, p + I

are saved, where 2L < p < M - 1. A new set of p observations are shifted into the shift

registers and the network performs another estimation. Essentially, this procedure

amounts to shifting in p rather than M new observations after each estimation cycle.

[Ref. 3]

F. SIMULATIONS AND RESULTS:

The neural network based MLSE receiver structure was implemented and simulated

on the Mainframe. The program used is a self-driving program, provided as Appendix

F. The network was simulated by numerically solving the set of M differential equations

of Equation 5-12. The differential equations solver used in the simulation was the sub-

routine DGEAR of the IMSL library.

Then the M output values of DGEAR subroutine were passed through their re-

spective neural amplifiers. The input-output function of the neural amplifiers was im-

plemented as a hyperbolic tangent function.

vj(t) = - tanhEG u(t)] i = 1, ..., MI (5- 19)

70

where G is the gain constant. Increasing G increases the slope of the input-output curve

in the transition region and reduces the width of the region (see Figure 37) [Ref. 31.

The transnission channel impulse response is modeled by a finite response square

cosine function given by [Ref. 10]

Fzrco 7t d 5-TO

h(t, a) = (5-20)
0, Itl> T

where the multiplicativeterm F(o.) is included to model the time-varying channel. For the

l:ationarv channel simulations, F(o.) is taken as 1. Channel interference also includes

additive White Gaussian noise n(t). The combined response of the channel and matched

filter is then [Ref. 10]

st { -o (To-ltl) l+---cos --)j + sin(2rIrtIT) It! I -0T)-~t ,o' _ T (5-21)
0 Itl > To

where N0 denotes the single-sided spectral density of the additive White Gaussian noise

n(t). and T is the time duration of the intersymbol interference. Equations 5-20 and 5-21

are sampled at intervals of T seconds, where T is the bit duration, to generate the L +

1 discrete time channel coeflicients (h,(Y)'s) and 2L + I discrete time coefficients de-

scribine the combined response of the channel and matched filter (s,(O.)'s). VLSI imple-

mentation using sequential processing techniques have been reported for data rates up

to 240 bits second iRef. 31. The channel memory L is given by

To
L = - (5-22)

T

Actually, L is the largest integer less than or equal to -- but in this simulation we

are going to take L as

Using the coefficients generated by sampling Equations 5-20 and 5-21 and assuming

a stationary channel (F() = 1) and baseband transmission model, the received samples

(,s are generated by the expression

71

+ Ut Ik-= + ... ,II (5- 23)

where _i, replace,, y(t) at t IT hi, I,A replaces h(t) at t 0 -I kji and n, is a samplc of the

additive White (jauSIan noise n(t) at t = iTl. For this simulation,thc noise samplcs arc

Venerated by at (Gaussian random number generator (;(iM L of thc I MSI library. The

datat symblols (a, s) which arc ± I and -1I, are generated With eqlual probability using a

Uniform random number generator (iWl) of'thc I MS1. library. TFhen, the observations

(z,'s) are generated by the expression

Zj'A1l- Ii l = 1, -1"t (5 -24)
1:1

The .xsand z,'s generated by thle Equations 5-23 and 5-24 are substituted ito)

I qua tin 5-10" to deline the parameters of thec neural network. A gain faict or (I of' 10000li

WWs used f*or thle MituLIlattillis b)caul~se of the very small oultput numibers of teli difliCrential

eq tIL0Ins1 sol s r I)(llAR. ILaCh simulationl Ntarte(I with /.cr(initial conditions and the

con11~iputtions were stopped after simulation of* 5r seconds (5 timei Constants). 'I lie editl-

III' tvk ,eqkICeC, 1hw "A oulputs of the neCural amplifiers (1 iguire 1)), was then comlpared

to t lie trari sn lit ted seuceIIIL and tile total lIIIhbe of errors were recorded. A I o, thet Cs-

in aitcd seq ucncc was comipared to ant es.t ite obtalre hdiec -01111L~tll Of tile
\ L .cost functionl miI ile nmber- of data sx inols ich differed betweeni thle tw\o

estiiiiated seq ckticesCI was, recorded.
f able I (lite number of nriilons (M) used In thle simlulation, the nletwork timei

consta or1 (r). tile c-haliiiel iemilorx 1. which wasN taken to he 2 f'Or all tile lihlowi. the

silJ-to-lioisC rain)M (N\RP) £'i eii at tile ou.tput11 of' tile matched filter and is, cIllpu)Ltedi

SA R - 3 1*()-
4 A\)

tile iiuniier Of data (p) shifted into the rcisters at each simuilationl Step, the nibller (If

s,%inihol t[-ra snoitt ed (N), thle error data for each simnula tion. I lie last col unin of I a ble

I list the nunhcr of data ,%:nhul est1iate which difleredk betweenl tile neurafl network

estiliates and fii ct c(Imiplit.1tlil of thle \'l [NI cost functionl.

72

N Time Chan- No. of Totalneurons con- nel SNR symbols Total differ-

stant mem- (dB) transmitted Errors(MI (msec) or (L) (N) ences

9 29.7 2 8 6 2500 0 0

9 1.S 2 12 6 2500 0 0

9 4.7 2 16 6 2500 0 0

9 1.9 2 20 6 2500 0 0
17 14.9 2 8 12 1500 0 0

17 5.9 2 12 12 1500 0 0
17 2.3 2 16 12 1500 0 0
1V 1.() 2 20 12 1500 0 0

25 9.9 2 8 18 1000 0 0

25 3.9 2 12 18 1000 0 0

25 1.6 2 16 is 1000 0 0

25 0.6 2 21) is 1000 0 0

Table 1. SIMULATIONS RESULTS FOR MLSE NEURAL NETWORK (STA-
TIONARY CHANNEL)

To simulate the time-varying channel, the multiplicative F(7) will be changed at each

sampling instant. The value of F(o) is constrained to be in the interval

0.8 < F(Y) _< 1.0

The random number generator GGUD of the IMSL library was used to generate
uni-ornlv distributed samples, A,, as described in the computer program of Appendix

F. The generated samples A are distributed in the interval

-0.1 < Aj _ 0.1

So at a certain sampling instant, say a = iT, the value of F(a) is computed by

F(iT) = 0.9 + A

The transmission channel impulse response samples hJ's and the combined response

of the channel and matched filter s 's along with z, are the parameters describing the

time-%arying channel at a certain time t = iT. With the exception of this modification.

73

the simulator for the tjmne-varvjnE channel is identical to that for the stationarv channel.

Results of this simulation for the time-varying channel are listed in Table 2. [Ref' 3]

No. of Time Chan- No. ofToacon- nel SNR sx'mbols Total Toa
neurons stant mem- (dB) P transmitted Errors difr

(NI) (msec) orv (L)_________ (N ences

9 29.7 2 S 6 2500 0 0
9 H.S 2 12 6 25 00(0 0

94.7 2 16 6 2(000

9 1.922 250

17 1-4.9 2 S 12 150)0 0 0

5.9 2 12 12 1 ()0(
V2.3 2 16 12 150

V1.0 2 2' [T 12 150

Table 2. SIMULATION RESULTS FOR MN1L SE NE URFAL NE TWOR K
(l{NIL-VARYING CHANNEL)

Thle neura'l network presented in this study can be thought of as an alternative to

,ie V lteihi algorithmi Rcf. I. t~ for comp~utation of- the %ILSE cost function1-. Unlike tile

Viteriti al _orlihn ii plenientation. the neural network does not require a vast amount

of- memnorv I'r0te-ce From the simiulation results for the t%.,, ransinission chainel
~cnIion fora cannl meoryof . we can conclude that the neural niet\\ ork can be

Lu',Cd TO extirite a transm-itted seqluence of-ia-dt yios Conparing the eti-

nnne-c, ol ti-e MI 1,Ml. neural network and those of- the di1 ect computation of the NI LSL

LT'ior. %we can w tv thatt The NI LSL, neural network does indee perf'orm th de-

e-:I,.iation. Thle amnount of data prov ided by the simulations is far too little to mk

any finl clusioL,,1ns LOnCerning the perfo rmance of the Mv LSL neural network. I low-

e; er. mel re u.:- are rrorni 11L and indicate that the neural network m-a-, be an attracti'

alternat!, c I' ir iraiplemen tt ion of- NI ESl for binarV comniL1cations sl';stemls. Re~f "I

VI. CONCLUSION

A. SUMMARY OF RESULTS:

In this study, we have first made an introduction to the field of artificial neural
networks. Then, we described the use of some neural networksin pattern recognition and

classification using binary pattern elements. A computer program from an algorithmic

approach for cach one of these networks was constructed and used to simulate the op-

eration of the net for different cases of input pattern.

The Hopfield network was the first net we worked on. A simulation program

imlementing the operation of this net as a content addressable memory for random input

patterns was made. As a supervised network, the Hopfield net is only iterating between

an input pattern and the ones that the teacher has already stored in its memory. showing

that this net is a non-learning one. This net was simulated by presenting noise-corrupted

or perfect input patterns. The response of the Hopfield net to each one of these input

patterns was provided to show the iterations taken by the net to recognize and classify

even noise-corrupted input patterns. By recognition and classification, we mean the net

converges to one of the M stored patterns that best matches the input pattern, as long

as the original pattern was stored in the net's memory prior to its use, otherwise a "no

match" will occur.

I towever, the number of stored patterns (M) is a limitation to the proper operation

of the net as a classifier because of the convergence condition demonstrated by Hopfield.

which states that the net will converge with high probability i Jl < 0.15N, where N is

the number of elements or bits in each pattern. These bits are taking on + I and -1

values, for the + 1 and -1 states, respectively.

Thie I anirning network is a classifier that calculates the Ilamniing distance to the

exemplar of each stored class and select that class with the minimum Ilamming distance

to the specified input pattern. The Haming distance is the number of bits in the input

which do not match the corresponding exemplar bits. As a supervised network, we have

first stored 1i exemplar patterns (M = 10) in its memory prior to its simulation. Simu-

lating the operation of this network on the computer. we have seen that it effectively

conergcc to the correct class for each input pattern. Even presenting noise corrupted

inr-ut pattcrns, the net correctly convergc to the correct class, as long as the original

p :~',ra- v., ssto'rcd In its nicmor\ prior to the simulation, otherwse a no match \will

occur. By convergence of the net, we mean the output nodes of the upper subnet (see

Figure S) stop changing in time and only the output node corresponding, to that

exemplar class which best matches the input pattern, is a positive nonzero value. While.

all the other output nodes were driven to zero by inhibition. In practice, the net will
converge and find the correct class when each weight w,.. connection weight from input

1. plust -e sml fraomu
i to node j in the lower subnet (see Figure 8), is set to I plus a small random

.11- I
component. Like the Hopfield net, the elements of the patterns used in these simulations

were taking on + 1 and -I values for the + 1 and -I states, respectively.

As a self-organizing (a non-supervised) neural net, the Carpenter . Grossberg net

self-organizes and self-stabilizes its recognition codes in response to arbitrary sequences

of binary input patterns. In its learning process, the net uses a threshold level called the

vigilance value which deternines how good the learned categories will be. If vigilance

value increases due to an environmental disconfirmation, then the net automatically
searches for and learns the best recognition categories. The Carpenter Grossberg net

is well known as an ART system, described in Appendix C. which forms clusters and is
trained without supervision. This net can learn from input patterns and later differentiate

between new and learned patterns. If the new and unknown pattern is classified as

previousely learned pattern at a certain level of vigilance, it will be ignored, but if it is

not. it will be added as a new learned pattern. This process is repeated as long as the net

ij learning. The number of learned patterns thus grows with time and depends strongly

on the level of vigilance used to compare input to the already stored ones. The results

of" simulating this network showed clearly the importance of the vigilance threshold. The

first simulation was done with a vigilance value of 0.9. which means that an input pat-

tern i.ust be very close to a stored exemplar to be considered similar. The result was 4

patterns learned out of 6 input patterns because the net has taken two input patterns

a, al' Alrcadv learned one. Next. we have done the same simulation but this time with a

xieiknee value of' .. -he results were 2 patterns learned out of 6 input patterns pre-

sented. So higher vigilance threshold can make the net to consider two patterns which

are most imilar. to be different and lower threshold can make the net to consider two

different patterns as similar. Thus the vigilance threshold, used in the learning process

of this network, is the dominant factor in the operation of this net, which behavior de-

pends strongly on it. .% proportional adaptation of the vigilance level to the existing

no;,e in the channel can make the net to perform perfectly during training and testing.

I eL'I of the parerns used to simulatc this net take on. contrary to the Lopfield

arnI tlm:.iI ncr,. tic - I and aluc\ lr the - I and -1 states, rcspecti el.

On the other hand, bandwidth-efficient data transmission over telephone and radio

channels is significantly improved by the use of adaptive equalization to compensate for

the time dispersion introduced by the channel. From the work done on adaptive re-
ceivers, a class of nonlinear receivers referred to as maximum-likelihood sequence esti-

mation receivers have emerged as front-runners with respect to error rate performance.

However, the high degree of computational complexity of the optimal maximum-

likelihood receivers has prohibited their use in many applications. It was shown that

neural networks can be used to implement the MLSE and that these networks offer an

attractive alternative for implementation. After mapping the MLSE onto a neural net-

work, we have done some simulations on this network for stationary and time-varing
channels. The results, even though they are not based on enough data to draw definitive

conclusions, showed that the neural network may be an attractive alternative for imple-

mentation of the ,ILSE for binary communications.

B. NEURAL NETWORK TASKS:

The ield of neural networks include many different models designed to address a

wide range of problems in the primary application areas of speech, vision and robotics.

Most researchers focus on neural networks that perform those seven major tasks illus-

trated graphicallv in Figure 41. These tasks include : [Ref. 11

SENSORY DATA PREPROCESSING
(VIglon. Sp.ech)

CLASSIFICATION E7 j N

CAT- MOrON.
COLOR.
DEPTH

SELF-ORGANIZATION/ NONLINA R .,, NO

CAsEGOY FORMATION

4X 8,

(4 50
ROBOIC CONTfnOL

ASSOCIATIVE MEMORIES MULTI-SENSE AUTOMATA

e t t . a EYE HAND
COOROINA rICH

Figure 41. Seven Tasks that Neural Networks Can Perform [Ref. 11

* Pattern classification: Classifiers are trained with supervision using labeled training
data to partition input patterns into a pre-specified number of groups or classes.
These could represent different objects for a visual image classifier. Inputs to a
classifier may be binary as we have seen for the Hopfield and Hamming nets or
continuous-valued.

* Self-organization or Clustering: Self-organizing networks, like the Carpenter
Grossberg net, partition input examples into groups or clusters using unlabeled
training data. This type of clustering or vector quantization is an efficient technique
for reducing information that must be processed at higher levels with little loss in
performance. It also makes good use of the large amount of unlabeled training data
that is typically available in speech and vision problems.

" Associative memory (storage and access): An associative, or content-addressable
memory provides a complete memory item from a key consisting of a partial or
corrupted version of the memory. For example, it might return a complete article
citation from only the author's name or a complete image of a face from only the
bottom half.

" Sensory Data Processing (vision and speech): An enormous amount of realtime
preprocessing is performed in the peripheral sensory vision and hearing centers.
Neural networks can perform this function in real time using massive parallelism.

" Computational Problems: Custom neural network architectures can be designed to
solve specific computation problems. such as the traveling salesman problem and
other constrained optimization problems, using nonlinear analog computation.

* Nonlinear Mapping: Many neural networks can map a vector of analog inputs into
an output vector using a nonlinear mapping function which can be learned from
training data. These types of mappings are useful in many areas, including robot
control and nonlinear signal processing.

" Multi-sensor Automata: A number of complex, multi-module neural network
automata have been built with visual input and a robot arm to manipulate objects
in an environment. These automata demonstrate how an eve or camera can learn
to scan a scene using self-supervision, how control of a multi-jointed arm and hand
can then be learned using self-supervision, and then how the eve and hand can be
coordinated to perform simple tasks. These automata also demonstrate how inputs
from multiple sensors can be fused to provide classification performance better
than could be achieved with a single sensor.

C. CONCLUSIONS:

From the study done by DARPA [Ref. 1], we can conclude that neural networks

offer important new computational structures. Their real strength is derived from their

abilitv to self-adapt and learn. If neural networks realize their full potential. they can be

used for machine vision, speech recognition, signal processing, robotics and other ap-

plications.

Neural network research has matured greatly since the perceptron of' 195 0 s. thank-

to the de clopment of advanced mathematical theories and new computer tool,, and also

to a better understanding of neurobiologv. The hardware capabilities are limiting the de-
velopment of important neural network applications. It is clear that if' researchers are
not provided with improved simulation and implementation capabilities, the field of

neural networks will once again drift off into the wilderness.

79

APPENDIX A. PROGRAMING THE HOPFIELD NET WHEN USED AS

A CLASSIFIER:

Using Fortran as programing language, the previously described operation algo-
rithm of the tHopfield net when used as a classifier was implemented with the mainframe,

and used to run some simulations as described in the simulation paragraph of the

Hopfield net.

C
C THESIS RESEARCH
C HOPFIELD NET SIMULATION PROGRAM
C BY M. H. KHAIDAR
C
C
C

C * THIS PROGRAM WAS MADE TO IMPLEMENT THE HOPFIELD NETWORK *
C * OPERATION ALGORITHM WHEN THIS NETWORK IS USED AS A *
C * CLASSIFIER. AFTER THE INPUT PATTERN IS PROCESSED AS
C * DISSCUSSED BEFORE AND AFTER CONVERGENCE, THE OUTPUT WILL BE *
C * COMPARED TO THE M (M = 8 IN THIS IMPLEMENTATION) EXEMPLARS *
C * TO DETERMINE IF IT MATCHES AN EXEMPLAR EXACTLY. IF IT DOES, *
C * THE OUTPUT IS THAT CLASS WHOSE EXEMPLAR MATCHED THE OUTPUT *
C * PATTERN. IF IT DOES NOT THEN A "NO MATCH" RESULT OCCURS. *
C * DECLARATION OF VARIABLES:
C * PATT(I,S) = THE ITH ELEMENT OF THE STH STORED EXEMPLAR *
C * T(I,J) = THE CONNECTION WEIGHT FROM NODE I TO NODE J*
C U(J,T) = THE OUTPUT OF NODE J AT TIME T *
C * W(I) AND V(I) = THE ITH ELEMENT IN THE MATRIX COLUNM *
C INPUT PATTERN W AND THE MATRIX COLUNM
C * OUTPUT PATTERN V
C MAT(12,10), V(12,10) AND CMAT(12,10) = THE 12 BY 10 *
C MATRIX REPRESENTATION OF AN EXEMPLAR
C * CLASS(J) = THE MATRIX COLUNM OF THE JTH STORED PATERN*
C * N = THE NUMBER OF ELEMENT IN EACH EXEMPLAR
C * M = THE NUMBER OF STORED EXEMPLARS *
C * DIFF(120,J) = THE DIFFERENCE BETWEEN THE OUTPUT MATRIX *
C * COLUNM AFTER CONVERGENCE AND THE JTH STORED*
C * PATTERN FOR CLASSIFICATION *

C
C

INTEGER PATT(120,8), U(10,120), T(120,120), V(12,10), CLASS(120)
INTEGER S, I, J, K, COUNT, MAT(12,10)
REAL W(120), VEC(120), DIFF(120,8), CMAT(12,10), DMAT(12,10)
CHARACTER*1 TE-)(12,10)
PRINT*,' HOPFIELD NETWORK IMPLEMENTATION'
PRINT*,'

C

90

C
C * INITIALIZE WITH UNKNOWN INPUT PATTERN *
C
C

N 120
M= 8
OPEN(UNIT=1, FILE='NINE1', STATUS='OLD')
DO 5 I=l, N

READ(1,*) W(I)
U(I,I) = W(I)

5 CONTINUE
PRINT*,'
PRINT*,'
PRINT 1

1 FORMAT('THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK,
&'ON THE LEFT AS IM-'/
&'POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR
&'REPRESENTATION' /
&'WHERE EVERY (*) REPLACES A I AND EVERY () REPLACES A -1:')
CALL VECMAT(W,MAT)
PRINT*, ' '
DO 210 I=1,12

DO 220 J=1,10
DMAT(I,J) = MAT(I,J)

220 CONTINUE
210 CONTINUE

DO 230 I=1,12
DO 240 J = 1,10

IF(DMAT(I,J).EQ. 1) I[EN
TEMP(I,J) =

ELSE
TEMP(I,J) =

ENDIF
240 CONTINUE
230 CONTINUE

DO 140 K = 1, 12
WRITE(*,145) (MAT(K,J), J=1,10), (TEMP(K,J), J=1,10)

140 CONTINUE
145 FORMAT(4X,i013,6X,10(AI,2X))

DO 10 I=l, N
READ(*, 15) (PATf(I,S), S=1,M)

10 CONTINUE
15 FORMAT(IX,8I5)

C
C
C * ASSIGN CONNECTION WEIGHTS *
C
C

DO 20 J=l, N
DO 30 I=l, N

IF(I.EQ.J) THEN
T(I,J) = 0

ELSE
SUM = 0
DO 35 S=I, M

SUM = SUM + (PATF(I,S)*PATT(J,S))

81

35 CONTINUE
T(I,J) = SUM

ENDIF
30 CONTINUE
20 CONTINUE

C
C
C * ITERATE UNTIL CONVERGENCE *
C
C

DO 40 K=1, 9
DO 50 J=l, N

SUM2 =
DO 60 I=l, N

SUM2 = SUM2 + (T(I,J)*U(K,I))
60 CONTINUE

IF(SUM2. LT. 0) THEN
U(K+1,J) = -1

ELSE
U(K+1,J) = 1

ENDIF
50 CONTINUE

FLAG = 0
DO 70 I=l, N

IF(U(K,I).NE.U(K+1,I)) THEN
FLAG = 1

ENDIF
70 CONTINUE

IF(FLAG. EQ. 0) THEN
COUNT = K
GOTO 400

ENDIF
40 CONTINUE

C
C
C PRINT SHAPES
C
C
400 DO 80 I=l, COUNT

DO 90 J=l, N
VEC(J) = U(I,J)

90 CONTINUE
PRINT-,'
PRINT*,'
PRINT 260,1

260 FORMAT('AFTER, THE',12,'TH ITERATION(S), THE OUTPUT OF THL
+ 'HOPFIELD NETWORK LOOKS LIKE '/
+ 'THE FOLLOWING FOR THE '
+ 'UNKNOWN INPUT PATTERN PRESENTED:')

PRINT--,'
PRINT,, '
CALL VECMAT(VEC,MAT)
CALL CHARMAT(MAT,CMAT)

80 CONTINUE
C

C -

S2

C * CLASSIFICATION *
C
C

PRINT*,'
PRINT ,'
PRINT*,CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:'
PRINT*,
PRINT 2

2 FORMAT('AT THIS POINT, FURTHER ITERATIONS WON''T MAKE ANY
&'CHANGE ON THE OUTPUT'/
&'OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES
&'IS THE'/
&'NET''S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE
&'INPUT AS AN'/
&'ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR. AFTER
&'CLASSIFICATION, '/
&'THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES BEST THE PATTERN
&'OF')
DO 200 I=l, N

CLASS(I) = U(COUNT,I)
200 CONTINUE

DO 180 S=I, M
DO 190 I=l, N

DIFF(I,S) = PATT(I,S) - CLASS(I)
IF(DIFF(I,S).EQ. 0) THEN

SCLASS = S
ELSE

GOTO 180
ENDIF

190 CONTINUE
GOTO 170

180 CONTINUE
170 IF(SCLASS. EQ.1)THEN

PRINT ,'DIGIT ZERO.'
ELSEIF(SCLASS. EQ. 2)THEN

PRINT*,'DIGIT ONE'
ELSEIF(SCLASS. EQ. 3)THEN

PRINT*,'DIGIT TWO.'
ELSEIF(SCLASS. EQ.4)THEN

PRINT*,'DIGIT THREE.'
ELSEIF(SCLASS. EQ. 5)THEN

PRINTh,'DIGIT FOUR.'
ELSEIF(SCLASS. EQ. 6)THEN

PRINT*,'DIGIT SIX.'
ELSEIF(SCLASS. EQ. 7)THEN

PRINT*,'BLOCK REPRESENTING THE POINT.'
ELSEIF(SCLASS. EQ. 8)THEN

PRINT,'DIGIT NINE.'
ELSE

PRINT*-,,'NO MATCH'
ENDIF
CLOSE (1)
CLOSE (2)
STOP
END

C

83

C
c

SUBROUTINE VECMAT(ARR,MAT)
DIMENSION ARR(120), MAT(12,10)
K= 0
DO 100 J=l, 10

DO 110 I=1,12
KK+ 1
MAT(I,J) = ARR(K)

110 CONTINUE
100 CONTINUE

RETURN
END

C
C
c

SUBROUTINE CHARMAT(MAT,CiMT)
DIMENSION MAT(12,10),CMAT(12,10)
CHARACTER*1 TEMP(12,10)
DO 120 I=1,12

DO 130 J=1,10
CMAT(I,J) = MAT(I,J)

130 CONTINUE
120 CONTINUE

DO 160 I=1,12
DO 165 J = 1,10

IF(CMAT(I,J).EQ.1) THEN
TEMP(I,J) = f*1

ELSE
TEMP(I,J) =

ENDIF
165 CONTINUE
160 CONTINUE

DO 166 I = 1, 12
WRITE(6,167)(TEMP(I,J),J=1,10)

167 FORMAT(22X,10(A1,2X))
166 CONTINUE

RETURN
END

C
C
C * HERE ARE THE 8 STORED EXEMPLAR PATTERNS USED IN THIS PROGRAM *
C * FOR CONVENIENCE, I CHOOSED TO WRITE THEM IN COLUNMS WHERE *
C * EACH ONE CORRESPONDS TO A STORED EXEMPLAR PATTERN. THE FIRST *
C * COLUNM CORRESPONDS TO THE PATTERN OF A ZERO, THE SECOND OF A *
C * ONE, THE THIRD OF A TWO, THE FOURTH OF A THREE, THE FIFTH OF *
C * A FOUR, THE SIXTH OF A SIX, THE SEVENTH OF A POINT, THE EIGHT*
C *AND LAST OF A NINE.
C
C$DATA

-1 -1 1 -1 -1 1 1 -1
-1 -1 1 -1 -1 1 1 -1
-1 -1 -1 -1 -1 1 1 -1
-1 -1 -1 -1 -1 1 1 -1
-1 -1 -1 -1 -1 1 1 -1
-1 -1 1 -1 -1 1 1 -1

84

-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 1 1 1 -1
-1 -1 1 -1 1 1 1 -1
-1 -1 -1 -1 1 1 1 -1

1 -1 -1 -1 1 1 1 -1
1 -1 -1 -1 1 1 1 -1
1 -1 1 -1 1 1 1 -1
1 -1 1 '-1 1 1 -1 -1
1 -1 1 -1 -1 1 -1 -1
1 -1 1 -1 -1 1 -1 -1

-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1 -1
-1 -1 1 1 1 1 1 -1
-1 -1 1 1 1 1 1 -1

1 -1 -1 -1 1 -1 1 -1
1 -1 -1 -1 1 -1 1 -1
1 -1 -1 -1 i! -1 1 -1
1 -1 1 -1 1 1 1 -1
1 -1 1 '-1 1 1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1

-1 -1 1 1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1
'-1 1 1 1 -1 1 1 -1

1 1 1 1 -1 1 1 -1
1 1 -1 -1 -1 -1 1 -1

1 1 -1 -1 -1 -1 1 -1
1 1 -1 -1 -1 -1 1 -1
1 1 1 -1 1 1 1 -1
1 1 1 -1 1 1 -1 -1
1 1 -1 -1 -1 -1 -1 -1
1 1 -1 -1 -1 -1 -1 -1
1 1 -i -1 -1 -1 -1 -1
1 1 1 1 -1 1 -1 -1

-1 1 1 1 -1 1 -1 -1
-1 1 1 1 -1 1 1I 1

1 1 1 1 -1 1 1 1
1 1 -1 -1 -1 -1 1 1

-1 1 -1 -1 -1 -1 1 1
-1 1 -1 -1 -1 -1 1 1
-1 1 1 1 1 1 1 1
-1 1 1 1 1 1 -1 1
-1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 1 -1 -1

1 1 -1 -1 -1 1 -1 -1
1 1 1 1 -1 1 -1 1

-1 1 1 1 -1 1 -1 1
-1 1 1 1 -1 1 -1 1

1 1 1 1 -1 1 -1 1

85

1 1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 -1 1
-1 1 1 1 1 1 -1 1
-1 1 1 1 1 1 -1 1
-1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 1 -1 -1

1 1 -1 -1 -1 1 -1 -1
1 1 1 1 -1 1 -1 1

-1 1 1 1 -1 1 -1 1
-1 1 1 1 -1 -1 -1 1

1 1 1 1 -1 -1 -1 1
1 1 1 -1 -1 -1 -1 -1
1 1 1 -1 -1 -1 -1 -1
1 1 1 -1 -1 -1 -1 -1
1 1 1 1 1 -1 -1 1
1 1 1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 -1 -1
1 2 -1 -1 -1 -1 -1 -1
-. 1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 1

"i 1 1 1 -1 -1 -1 1
-1 -1 1 1 1 -1 -1 1

-! -1 1 1 1 -1 -1 1
1 -1 1 1 1 -1 -1 -1
1 -1 1 1 1 -1 -1 -1
1 -1 1 1 1 -1 -1 -1
1 -1 1 1 1 -1 -1 1
1 -1 1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 '-1 *
1i -1 -1 1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 -1

-1 -1 1 1 1 -1 -1 1
-1 -1 1 1 1 -1 -1 1
-1 -1 -1 -1 1 -1 -1 1
-1 -1 -1 1 1 -1 -1 1
-1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 -1 -1 1
1 -1 -1 -1 1 -1 -1 1
1 -1 -1 1 1 -1 '-1 1
1 -1 -1 1 1 -1 -1 1

-1 -1 -1 1 1 -1 -1 1
-1 -1 -1 1 1 -1 -1 1
-1 -1 -1 -1 1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

87

APPENDIX B. PROGRAMING THE HAMMING NET WHEN USED AS

AN OPTIMUM CLASSIFIER:

Using Fortran as programming language, the previously described operation algo-

rithm of the Harming net when used as a classifier was implemented with the

Mainframe, and used to run some simulations as described in the simulation paragraph

of the Hamming net.

C
C THESIS RESEARCH
C *HAMMING NET SIMULATION PROGRAM
C BY M. H. KHAIDAR
C
C
C
C
C * THIS PROGRAM WAS MADE TO IMPLEMENT THE ALGORITHM OPERATION OF*
C * THE HAMMING NET, WHEN IT IS USED AS A CLAS---IER, PROVIDED IN*
C * THE CHAPTER ABOUT THIS NET. *
C * VARIABLE DECLARATION :
C * N = NUMBER OF NODES IN EACH EXEMPLAR
C * M = NUMBER OF STORED EXEMPLARS *
C * PATT(I,J) = THE ITH ELEMENT OF rHE JTH STORED EXEMPLAR *
C * THETA = THE THRESHOLD IN EACH NODE *
C W(I,J) = THE CONNECTION WEIGHT FROM INPUT I TO NODE J *
C * X(I) = THE ITH ELEMENT OF THE INPUT PATTERN TO THE NLT
C * U(J,T) = THE OUTPUT OF NODE J AT TIME T *
C * EPSILON = THE VALUE OF WEIGHTS (INHIBITORY) BETWEEN
C * DIFFERENT OUTPUT NODES *
C
C

INTEGER PATT(120,10), U(10,11), MAT(12,10), q
INTEGER THETA, I, J, K, T, MAP(12,10)
REAL RESLT, EPSILON, W(120,10), SUM, SUM2, X(120), ARR(120)
REAL CMAT(12,10)
CHARACTER*1 TEMP(12,10)
PRINT*,' HAMMING NETWORK IMPLEMENTATION'
PRINT*,'
EPSILON = 0.08

C
C ******** THETA(J) = N/2 = 120/2 = 60 **************************
C

THETA = 60
C
C
C * ASSIGN CONNECTION WEIGHTS *
C ******************* ** ** ** * ** **
C

M = 10

88

N = 120
DO 10 I=l, N

READ(*,15) (PATT(I,J), J=l, M)
10 CONTINUE
15 FORMAT(IX,10I5)

DO 20 I=l, N
DO 25 J=l, M

W(I,J) = PA'r(I,J)/2.0
25 CONTINUE
20 CONTINUE

C
C
C * INITIALIZATION WITH UNKNOWN INPUT PATTERN *
C
C

OPEN(UNIT=l, FILE=' INPUT', STATUS='OLD')
DO 30 I=i, N

READ(1,*) X(I)
30 CONTINUE

PRINT,*, , ' ,
PRINT*,'
PRINT 1

1 FORMAT('THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE'
&'LEFT AS IM-'/
&'POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR'
&' REPRESENTATION' /
&'WHERE EVERY (*) REPLACES A 1 AND EVERY () REPLACES A -1:')
CALL VECMAT(X, CMAT)
CALL CHARMAT(MAT, CMAT,TEMP)
PRINT*,' '
PRINT*,'
DO 140 I =1, 12

DO 141 J=l, 10
MAP(I,J) = INT(CMAT(I,J))

141 CONTINUE
140 CONTINUE

DO 142 I =1, 12
WRITE(6,145)(MAP(I,J), J=l, 10), (TEMP(I,J), J=l, 10)

142 CONTINUE
145 FORNAT(4X,1013,6X,10(A1,2X))

DO 40 J=l, M
SUM = 0
DO 50 I=l, N

SUM = SUM + W(I,J)*X(I)
50 CONTINUE

SUMI = SUM + THETA
IF(SUM1. GT. 0) THEN

U(J,l) = SUMi
ELSE

U(J,1) = 0
ENDIF

40 CONTINUE
C
C
C * ITERATE UNTIL CONVERGENCE *

89

C
C

DO 60 T=I, 10
DO 70 J=1, M

SUM2 = 0
DO 80 K=I, M

IF(K. NE. J) THEN
SUM2 = SUM2 + U(K,T)

ENDIF
80 CONTINUE

RESLT = U(J,T) - SUM2*EPSILON
IF(RESLT.GT.0) THEN

U(J,T+I) = RESLT
ELSE

U(J,T+I) = 0

ENDIF
70 C ONT ILN;E
60 CONTINUE

C
C
C * THE OUTPUT OF THE HAMMING NETWORK *
C
C

PRINT*,'
PRINT*,'
PRINT 2

2 FORMAT('THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM
&'REPRESENTS THE '/
&'OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN
&'NUMBER '/
&'OF ITERATIONS:')

PRINT*,'
PRINT*,' '

C
C
C ONLY TEN ITERATIONS ARE SUFFICIENT TO THE NET TO CONVERGE TO*
C * THE RIGHT ANSWER FOR OUR SIMULATIONS *
C
C

PRINT*,'NUMB. OF ITERATIONS= 1',' 2',' 3'' 41, 51
+ 6',' 71 8',' 9' 10'

PRINT--'-,'
DO 90 J=l, M

Q=J- 1
WRITE(*,95) Q,(U(J,T), T=1,10)

90 CONTINUE
95 FORMAT(IX,'FOR CLASS',12,': ',4X,1015)

PRINT*,'
PRINT*,'
PRIN -*,'CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:'
PRINT*,'
PRINT 3

3 FORIMAT('THEN, THE DISTURBED UNKNOWN INPUT TO THE HAMMING NETWORK '/
&'AFTER CONVERGENCE CORRESPONDS TO THE PATTERN STORED OF THE')

IF(U(1, 10). GT. O)THEN
,CLAS ZERO.

90

ELSEIF(U(2,10).GT. 0)THEN
PRINT*,'CLASS ONE.'

ELSEIF(U(3,10). GT. 0)THEN
PRINT*, 'CLASS TWlO.

ELSEIF(U(4, 10). GT. 0)ThEN
PRINT*,'CLASS THREE.'

ELSEIF(U(5,10). GT. O)THEN
PRINT*V,'CLASS FOUR.'

ELSEIF(U(6,10). GT. O)THEN
PRINT'*,'CLASS FIVE.'

ELSEIF(U(7, 10). GT. 0)THEN
PRINT*,'CLASS SIX.'

ELSEIF(U(8, 10). GT. 0)THEN
PRINT*,'CLASS SEVEN.'

ELSEIF(U(9,10).GT. 0)THEN
PRINT*,'CLASS EIGHT.'

ELSEIF(U(10,10). GT. 0)THEN
PRIN-F*,'CLASS NINE.'

ENDIF
STOP
END

C
C
C

SUBROUTINE VECMAT(ARR,CMAT)
DIMENSION ARR(120), CMAT(12,10)
K = 0
DO 100 J1I, 10

DO 110 I=1,12
K =K + 1
CMAT(I,J) =ARR(K)

110 CONTINUE
100 CONTINUE

RETURN
END

C
C
C

SUBROUTINE CHARMAT(MAT,CMAT,TEMP)
DIMENSION MAT(12,10), CMAT(12,10)
CHARACTER*1 TEMP(12, 10)
DO 150 J=1, 10

DO 160 I=1, 12
MAT(I,J) = CMAT(I,J)

160 CONTINUE
150 CON'TINUE

DU 7C T =1, 12
DO 180 J=1, 10

IF(MAT(I,J).EQ.1) THEN
TEMP(I,J) =

ELSE
TEMP(I,J) = '

END I Fr
180 CONTINUE
170 CONTINUE

RETURN

91

END
C
C ***r* ,**
C * HERE ARE THE 10 STORED EXEMPLARS USED IN THE IMPLEMENTATION *
C * OF HAMMING NET. FOR CONVENIENCE, I CHOOSED TO WRITE THEM IN *
C * A MATRIX OF 10 COLUNMS AND 120 ROWS, WHERE EVERY COLUNM *
C * CORRESPONDS TO AN EXEMPLAR OF 120 ELEMENTS REPRESENTING THE *
C * 12 BY 10 REPRESENTATION OF THE PATTERN AS SHOWN IN THE STUDY *
C * OF THE HAMMING NET. THE FIRST VECTOR COLUNM CORRESPONDS TO *
C * THE PATTERN OF DIGIT 0, THE SECOND OF 1, THE THIRD OF 2, THE *
C * FOURTH OF 3, THE FIFTH OF 4, THE SIXTH OF 5, THE SEVENTH OF *
C * 6, THE EIGHT OF 7, THE NINTH OF 8 AND THE LAST OF 9. *C ****,***************************************

CSDATA
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 1 1 1 -1 -1 -1
-1 -1 1 -1 1 1 1 -1 -1 -1
-1 -1 -1 -1 1 1 1 -1 -1 -1

1 -1 -1 -1 1 1 1 -1 -1 -1
1 -I -1 -1 1 1 1 -1 -1 -1i
1 -1 1 -1 1 1 1 -1 -1 -1
1 -1 1 -1 1 1 1 -1 -1 -1
1 -1 1 -1 -1 -1 1 -1 -1 -1
1 -1 1 -1 -1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 1 1 -1 -1 -1
-1 -1 1 -1 -1 1 1 -1 -1 -1
-1 -1 1 1 1 1 1 1 -1 -1
-1 -1 1 1 1 1 1 1 1 -1

1 -1 -1 -1 1 1 -1 -1 1 -1
1 -1 -1 -1 1 1 -1 -1 1 -1
1 -1 -1 -1 1 1 -1 -1 -1 -1
1 -1 1 -1 1 1 1 -1 -1 -1
1 -1 1 -1 1 1 1 -1 -1 -1
1 -1 -1 -1 -1 -I -1 -1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1 1 -1
1 -1 -1 -1 -1 -1 -1 -1 1 -1

-1 -l 1 1 -1 1 1 -1 1 -1
-1 -1 1 1 -1 1 1 -1 -1 -1
-1 1 1 1 -1 1 1 1 1 -1

1 1 1 1 -1 1 1 ! ! -l
1 1 -I -1 -1 -1 -1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 1 -1
1 1 1 -1 1 1 1 -1 1 -1

92

1 1 1 -1 1 1 1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 1 -1
1 1 1 1 -1 1 1 -1 1 -1

-1 1 1 1 -1 1 1 -1 1 -1
-1 1 1 1 -1 1 1 1 1 1

1 1 1 1 -1 1 1 1 1 1
1 1 -1 -1 -1 -1 -1 -1 -1 1

-1 1 -1 -1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 -1 -1 -1 1
-1 1 1 1 1 1 1 -1 1 1
-1 1 1 1 1 1 1 -1 1 1
-1 1 -1 -1 -1 -1 1 -1 -1 -1
-1 1 -1 -1 -1 -1 1 -1 -1 -1

1 1 -1 -1 -1 -1 1 -1 -1 -1
1 1 1 1 -1 1 1 -1 1 1

-1 1 1 1 -1 1 1 -1 1 1
-1 1 1 1 -1 1 1 1 1 1

1 1 1 1 -1 1 1 1 1 1
1 1 -1 -1 -1 -1 -1 -1 -1 1

-1 1 -1 -1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 -1 -1 -1 1
-1 1 1 1 1 1 1 -1 1 1
-1 1 1 1 1 1 1 -1 1 1
-1 1 -1 -1 -1 -1 1 -1 -1 -1
-1 1 -1 -1 -1 -1 1 -1 -1 -1

1 1 -1 -1 -1 -1 1 -1 -1 -1
1 1 1 1 -1 1 1 -1 1 1

-1 1 1 1 -1 1 1 -1 1 1
-1 1 1 1 -1 1 -1 1 1 1

1 1 1 1 -1 1 -1 1 1 1
1 1 1 -1 -1 -1 -1 1 1 -1

*1 1 1 -1 -1 -1 -1 1 1 -1
1 1 1 -1 -1 -1 -1 1 1 -1
1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 -1 1 1 1
1 1 -1 -1 -1 -1 -1 1 1 -1
1 1 -1 -1 -1 -1 -1 1 1 -1
1 1 -1 -1 -1 -1 -1 1 1 -1
1 1 1 1 -1 1 -1 1 1 1

-1 1 1 1 -1 1 -1 1 1 1
-1 -1 1 1 1 1 -1 1 -1 1
-1 -1 1 1 1 1 -1 1 1 1

1 -1 1 1 1 -1 -1 1 1 -1
1 -1 1 1 1 -1 -1 1 1 -1
1 -1 1 1 1 -1 -1 1 -1 -1
1 -1 1 1 1 1 -1 1 -1 1
1 -1 1 1 1 1 -1 1 -1 1
1 -1 -1 1 1 1 -1 1 -1 -1
1 -1 -1 1 1 1 -1 1 1 -1
1 -1 -1 1 1 1 -1 1 1 -1

-1 -1 1 1 1 1 -1 1 1 1
-1 -1 1 1 1 1 -1 1 -1 1
-1 -1 -1 -1 1 1 -1 -1 -1 I
-1 -1 -1 1 1 1 -1 -1 -1 1

93

-1 -1 -1 1 1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1 -1 -1 -1 1
1 -1 -1 -1 1 1 -1 -1 -1 1
1 -1 -1 -1 1 1 -1 -1 -1 1
1 -1 -1 1 1 1 -1 -1 -1 1
1 -1 -1 1 1 1 -1 -1 -1 1

-1 -1 -i 1 1 1 -1 -1 -1 1
-1 -1 -1 1 1 1 -1 -1 -1 1
-1 -1 -1 -1 1 1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -*1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 '-1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 1

94

APPENDIX C. ART AND OPERATION OF THE CARPENTER /
GROSSBERG NET:

The following is a description of the ART net operation according to Carpenter

Grossberg [Ref. 121. A cycle that traces the real time dynamics of ART network in re-
sponse to arbitrary sequences of binary input patterns is depicted in Figure 42.

T U T

S vs
1_+A..i A

+ +

(C) F2 (d) Y

T T

x~v + SF
Xi" +1+

Figure 42. The ART net search for a correct F code. [Ref. 12]

In Figure 42a, an unknown input pattern I is presented to the net. Pattern I is then

transformed into a pattern X of activation across the nodes.In other words, the input

pattern I generates a short term memory (STM) activity pattern X across a field of

95

feature detectors F, . Grossberg sees short term memory (STM) as a way of keeping

patterns active after the original input pattern has vanished. A short term memory is a
persistent activity pattern in a set of neurons, maintained by nonlinear feedback system.

The input pattern I also activates an orienting subsystem A, but pattern X at F, in-
hibits A before it can generate an output signal. On the other hand, the pattern X of
STM activities across F. elicits an output pattern S of output signals from F. When a
signal from a node in F, is carried along a pathway (the bottom-up adaptive filter) to
F2. the signal is multiplied or gated by the pathway's long term memory (LTM) trace.
The LTM-gated signal (i.e., signal times LTM trace), not the signal alone, reaches the

target node. Each target node sums up of all of its LTM-gated signals, which results in
pattern S generating a pattern T of LTM-gated and summed input signals to F as shown

in Figure 42a. The transfbrmation from S to T is called an adaptive filter. The input
pattern T to F is quickly transformed by interactions among the nodes of F . The re-
sulting pattern of activation across F, is a new pattern Y. This new pattern, rather than

the input pattern T. is stored in STM by F2. As soon as the bottom-up STM transfor-

mation X --- Y is completed, the STM activities Y in F2 elicit a top-down excitatory signal
pattern U back to F, (Figure 42b). Only sufficiently large STM activities in Y elicit
signals in U along the feedback pathways F - F. As before, the top-down signals U are
also gated by LTM traces and the LTM-gated signals are summed at F1 nodes. Then. the
pattern U of output signals from F, generates a pattern V of LTM-gated and sunmnied
input signals to F,. The transformation from U to V is thus also an adaptive filter. The
pattern V is called a top-down template. or learned expectation.

Two sources of input now perturb F. the bottom-up input pattern I which generated
the oricinal activity pattern X and the top-down template pattern V that resulted from
activating X. The amount by which activity in X is attenuated to generate X' depends
upon how much of the input pattern I is encoded within the template pattern V. In
particular, F, acts to match V against I. Now, we will discuss how a match or mismatch
of I and V' at F, regulates the course of learning in response to the pattern I.

When a mismatch attenuates STM activity across Ft, the total size of the inhibitor,
signal from F, to A is also attenuated. If the attenuation is sufficiently great, inhibition

from F, to A can no longer prevent the arousal source A from firing. Figure 42c shows

how disinhibition of A can result in the release of an arousal burst to F which equally,

or nonspecifically, induces selective and enduring inhibition of active population of/-.

In Fiuic -i.2c, inhibition of Y leads to removal of the top-down template V. and
thereby terminates the mismatch between I and V. Input pattern I can thus reinstate the

96

original activity pattern X across F, which again generates the output pattern S from

F. and the input pattern T to F. Due to the enduring inhibition at F2, the input pattern

T can no longer activate the original pattern Y at F2. A new pattern P is thus generated

at F. by I (Figure 42d).

The new activity pattern I' reads out a new top-down template pattern ['. If a

mismatch again occurs at F, the orienting subsystem is again engaged, thereby leading

to another arousal-mediated reset of STM at F2. In this way, a rapid series of STM

matching and reset events may occur. Such an STM matching and reset series controls

the system's search of LTM by sequentially engaging the novelty-sensitive orienting

subsystem. Although STM is reset sequentially in time via this mismatch mediated,

self-terminating LTM search process, the mechanisms which control the LTM search

are all parallel network interactions rather than serial algorithms. Such a parallel search

scheme continuously adjusts itself to the system's evolving LTM codes. In general. the

spatial configuration of' LTM codes depends upon both the system's initial configuration
and its unique learning history, and hence cannot be predicted a priori by a pre-wired

search algorithm. Instead, the mismatch-mediated engagement of the orienting subsys-

tem realizes the type of self-adjusting search.

The mismatch-mediated search of LTM ends when an STM pattern across F,
reads-out a top-down template (V) which matches I to the degree of accuracy reouired

by the level of attentional vigilance. or which has not yet undergone any prior learning.

In this case. a new recognition category is then established and a new bottom-up code

and new top-down template are learned [Ref' 6].

97

APPENDIX D. PROGRAMING THE CARPENTER / GROSSBERG NET

Using Fortran as programing language. the previousely described clustering algo-

rithm of the Carpenter Grossberg net was implemented with the Mainframe, and used

to run some simulations as described in the simulation paragraph of the net.

C
C THESIS RESEARCH
C **** CARPENTER / GROSSBERG NET SIMULATION PROGRAM
C BY M. H. KHAIDAR
C
C
C
C
C * THIS PROGRAM WAS MADE TO IMPLEMENT THE ALGORITHM OPERATTION *
C * OF THE CARPENTER / GROSSBERG NET, WHEN IT IS USED AS A CLASS-*
C IFIER, PROVIDED IN THE CHAPTER FOR THIS NETWORK.
C * VARIABLE DECLARATION *
C W(I,J) = THE TOP DOWN CONNECTION WEIGHT BETWEEN INPUT
C NODE I AND OUTPUT NODE J *
C * COUNT = THE NUMBER OF PATERNS STORED IN THE MEMORY OF *
C * THE NET AT A CERTAIN TIME T (THIS NUMBER IS VAR-,
C IANT IN TIME) *
C B(I,J) = THE BOTTOM UP CONNECTION WEIGHT BETWEEN INPUT
C NODE I AND OUTPUT NODE J
C RO = THE VIGILANCE THRESHOLD WHICH INDICATES HOW CLO-*
C SE AN INPUT MUST BE TO A STORED EXEMPLAR TO
C MATCH
C PATT(I,J)= THE ITH ELEMENT OF THE JTH STORED EXEMPLAR
C X(I) = THE VECTOR REPRESENTATION OF THE INPUT PATTERN
C JMAX = THIS VARIABLE INDICATES THE CLASS THAT BEST
C MATCHES THE INPUT PATTERN *
C U(J,T) = THE OUTPUT OF OUTPUT NODE J AT TIME T

INTEGER W(64,10), ANS, COUNT, JMAX, J, I, K, PATT(64,10)
INTEGER T, AMAT(8,8), MATRIX(8,8), TRUE, TIME
REAL B(64,10), SUM, SUM1, SUM2, SUM3, SUM4, RO, SUM5, SUM6
REAL EPSILON, RATIO, Y(64), RESLT, CMAT(8,8)
REAL ARR(64), X(64), PMAT(8,8), BMAT(8,8), U(10,11)

C
C
C * INITIALIZATION
C
C

PRINT*,' CARPENTER / GROSSBERG NETWORK IMPLEMENTATION'
PRINT*,' '
DO 10 I=l, 64

DO 20 J=l, 10
W(I,J) = 1
B(I,J) = r.125

9S

20 CONTINUE
10 CONTINUE

COUNT = 1
C
C *
C * APPLY NEW INPUT *
C * -********* ****,,*****************************

C
OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 25 I=l, 64

READ(1,26) PATT(I,I)
X(I) = PATT(I,I)

25 CONTINUE
26 FORMAT(,X,15)

PRINT*,'
PRINT*,'
PRINT*,'THE FIRST INPUT PATTERN TO CARPENTER / GROSSBERG NET.:'
CALL VECMAT(X,CMAT)
PRINT*,
PRINT*,'
DO 240 I=l, 8

DO 250 J=l, 8
AMAT(I,J) = INT(CMAT(I,J))

250 CONTINUE
240 CONTINUE

CALL CHARMAT(AMAT, PMAT)
TRUE = 0
JMAX = 1
TIME = 0
GOTO 800

400 !F(TRUE. EQ. 4) GOTO 600
PRINT*,'
PRIN T*,'
PRINT*,'PLEASE, ENTER YOUR CHOICE:'
PRINT,' (1) A NEW INPUT PATTERN'
PRINT*,' '
PRINT*,' (2) STOP'
READ*, ANS
IF(ANS. EQ. 1) THEN

TRUE = TRUE + 1
IF(TRUE. EQ. 1) THEN

GOTO 1
ELSEIF(TRUE. EQ. 2) THEN

GOTO 2
ELSEIF(TRUE. EQ. 3) THEN

GOTO 3
ELSE

GOTO 4
ENDIF

ELSE
GOTO 600

ENDIF
OPEN(UNIT=2, FILE'E', STATUS='OLD')
DO 30 I=l, 8

READ(2,35) (MATRIX(I,J), J=1,8)
30 CONTINUE

99

35 FORMAT(lX,815)
GOTO 7

2 OPEN(UNIT=3, FILE='F', STATUS='OLJ')
DO 31 1=1, 8

READ(3,36) (MATRIX(I,J), J=1,8)
31 CONTINUE
36 FORMAT(1X,8I5)

GOTO 7
3 OPEN(UNIT=4, FILE=1FPRIME', STATUS='OLD')

DO 32 I=1, 8
READ(4,37) (MATRIX(I,J), J=1,8)

32 CONTINUE
37 FORMAT(lX,8I5)

GOTO 7
4 OPEN(UNIT=5, FILE='FDPRIME', STATUS='OLD')

DO 33 I=1, 8
READ(5,38) (MATRIX(I,J), J=1,8)

33 CONTINUE
38 FORMAT(1X,8I5)
7 DO0441I=1, 8

DO 45 J1I, 8
BMAT(I,J) = REAL(MATRIX(I,J))

45 CONTINUE
44 CONTINUE

CALL MATVEC(BMAT,X)
C
C
C *COMPUTE MATCHING SCORES
C
C

DO 40 J=1, COUNT
SUM =0
DO 50 I~1, 64

SUM = SUM + B(I,J)*X(I)
50 CONTINUE

U(J,1) = sum
40 CONTINUE
C
C
C SELECT BEST MATCHING EXEMPLAR
C
C
900 EPSILON = 0.08

DO 60 T1l, 10
DO 70 J=1, COUNT

SUMi = 0
DO 80 K=1, COUNT

IF (K. NE. J) THEN
SUMi SUMi + U(K,T)

END IF
80 CONTINUE

RESLT = u,,J,T) - SUM1*EPSILON
IF(RESLT. GT. 0) THEN

U(J,T+1) = RESLT
ELSE

U(J,T+l) =0

I 00

ENDIF
70 CONTINUE
60 CONTINUE

DO 90 J=l, COUNT
IF(U(J,9).GT.0) THEN

JMAX = J
ENDIF

90 CONTINUE
C
C
C * VIGILANCE TEST *
C
C

RO = 0.7
SUM2 = 0
DO 100 I=1,64

SUM2 = SUM2 + X(I)
100 CONTINUE

SUM3 = 0
DO 120 I=l, 64

SUM3 = SUM3 + W(I,JMAX)*X(I)
120 CONTINUE

RATIO = SUM3 / SUM2
IF(RATIO. GT. RO) THEN

GOTO 200
ELSE

GOTO 300

ENDIF
C
C *
C * DISABLE BEST MATCHING EXAMPLAR

C
300 IF(TIME. NE. COUNT) THEN

DO 46 J=1, COUNT
TIME = TIME + 1
IF(U(J,1).NE.0) THEN

IF(J. NE. JMAX) THEN
SUM5 = 0
DO 47 I=l, 64

SUM5 = SUM5 + B(I,J)*X(I)
47 CONTINUE

U(J,l) = SUM5
ELSE

U(J,i) = 0
ENDIF

ENDIF
46 CONTINUE

GOTO 900
ENDIF
PRINT*,'BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD'
PRINT*,'THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
PRINT*,'ANY EXAMPLAR PATTERN STORED. THIS INPUT PATTERN IS'
PRINT-*,'THEN STORED WITH THE OTHERS AS A NEW EXAMPLAR.'
CALL VECMAT(X,CMAT)

PRINT'-,'

101

PRINT*,'THE UNKNOWN INPUT PATTERN TO CARPENTER/GROSSBERG NET.:'
PRINT*,' '
DO 260 I=l, 8

DO 270 J=l, 8
AMAT(I,J) = INT(CMAT(I,J))

270 CONTINUE
260 CONTINUE

CALL CHARMAT(AMAT,PMAT)
C
C
C * ADD THE NEW INPUT PATTERN TO THE MEMORY OF THE NET *
C
C

COUNT = COUNT + 1
OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 130 I=i, 64

PATT(I,COUNT) = X(I)
130 CONTINUE

REWIND 1
DO 140 1=1, 64

WRITE(1,145) (PATT(I,J), J=1,COUNT)
140 CONTINUE
145 FORMAT(IX,10I5)

SUM6 = 0
J = COUNT
DO 48 I=l, 64

SUM6 = SUM6 + W(I,J)*X(I)
48 CONTINUE

DO 49 I=1, 64
B(I,J) = (W(I,J)*X(I)) / (0.5 + SUM6)
W(I,J) = W(I,J)*X(I)

49 CONTINUE
TIME = 0
GOTO 400

C
C
C * ADAPT BEST MATCHING EXAMPLAR
C
C
200 PRINT*,'BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE'

PRINT*,'THRESHOLD, THE INPUT PATTERN IS CONSIDERED '
PRINT-,'TO MATCH A STORED PATTERN WHICH IS UPDATED BY'
PRINT*,'PERFORMING A LOGICAL ''AND'' OPERATION BETWEEN
PRINT--,'ITS BITS AND THOSE OF THE INPUT PATTERN, AND'
PRINT*,'THE NEW UPDATED PATTERN WILL LOOK LIKE:'
DO 150 I=1, 64

Y(I) = PATT(I,JMAX)*X(I)
150 CONTINUE

CALL VECMAT(Y,CMAT)
PRINT*,' '
DO 155 I=l, 8

DO 157 J=l, 8
AMAT(I,J) = INT(CMAT(I,J))

157 CONTINUE
155 CONTINUE

102

CALL CHARMAT(AMAT,PMAT)
C
C
C * THE UPDATED PATTERN IS PUT BACK INTO THE MEMORY OF THE NET *
C *****
C

OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 160 I=1, 64

PATT(I,JMAX) = Y(I)
160 CONTINUE

REWIND 1
DO 170 I=1, 64

WRITE(1,175) (PATT(I,J), J=1,COUNT)
170 CONTINUE
175 FORMAT(1X,1015)
800 SUM4 = 0

DO 180 I=1, 64
SUM4 = SUM4 + W(I,JMAX)*X(I)

180 CONTINUE
DO 190 I=I, 64

B(I,JMAX) = (W(I,JMAX)*X(I)) / (0.5 + SUM4)
W(I,JMAX) = W(I,JMAX)*X(I)

190 CONTINUE
GOTO 400

600 CLOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)
CLOSE (5)
STOP
END

C
C
C

SUBROUTINE VECMAT(ARR,CMAT)
DIMENSION ARR(64), CMAT(8,8)
K= 0
DO 220 J=l, 8

DO 230 I=1,8
K=K+ 1
CMAT(I,J) = ARR(K)

230 CONTINUE
220 CONTINUE

RETURN
END

C
C
C

SUBROUTINE MATVEC(CMAT,ARR)
DIMENSION ARR(64), CMAT(8,8)
K= 0
DO 310 J=l, 8

DO 320 I=l, 8
K= K + 1
ARR(K) = CMAT(I,J)

320 CONTINUE

103

310 CONTINUE
RETURN
END

C
C
C

SUBROUTINE CHARMAT(MAT,CMAT)
DIMENSION MAT(8,8),CMAT(8,8)
CHARACTER*1 TEMP(8,8)
DO 330 I=1,8

DO 340 J=1,8
CMAT(I,J) = MAT(I,J)

340 CONTINUE
330 CONTINUE

DO 650 I=1,8
DO 660 J = 1,8

IF(CMAT(IJ).EQ.1) THEN
TEMP(I,J) =

ELSE
TEMP(I,J) =

ENDIF
660 CONTINUE
650 CONTINUE

DO 370 I = 1, 8
WRITE(6,167)(TEMP(I,J),J=1,8)

167 FORMAT(8X,1OA1)
370 CONTINUE

RETURN
END

For the first input pattern to the net. we have used the pattern of the letter "C" given

below. The elements of the matrice representation take on 0 and 1 values. To make the

pattern clearer, we have replaced every element of 0 value by a white pixel and elements

of I value by black pixels. A compact representation of this pattern is shown to the right

below:

0 0 1 1 1 1 1 0 soon@
0 1 0 0 0 0 0 1 z
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 1 1 1 1 0 060@0

In a similar manner, the pattern representation of the letter "E" used in the simu-

lation of the net is shown below. Where the left hand side pattern representation of "E"

is the actual input to the net.

104

0 1 1 1 1 1 0 0 means
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 gas
0 1 0 0 0 0 0 0 a
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 Smmon

The pattern of the letter "F" is represented as

0 1 1 1 1 1 1 0 Ranges
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 m,,,
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

The noise corrupted version of the pattern "F" is

0 1 1 0 1 1 1 0 so son
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 soon
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 m"
0 1 0 0 0 0 0 0 m
0 1 0 0 0 0 0 0

A noisier pattern of the letter "F" is

0 1 1 1 1 1 1 0 summon
0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 noun
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

105

APPENDIX E. THE PARAMETERS FOR THE MLSE NEURAL
NETWORK

From [Ref 31, the MLSE cost function for the time-varying channel can be written
as

V ' M M

a)= -Z2 a, z + Z~ai 4s14ak (E- 1)
1=1 1=1 k=l

where s,2, denotes the value of s,_, at time the i' observation, z,, is sampled. The coeffi-

cients vary with the time and in general
SO :AsY) l =j
i-k * i-k

and it follows that

0) S2() 11 'i i 0= k
lik = S-k Sks-i ki

thus. the symmetrv conditior which is sufficient for stability no longer holds.

The M LSE cost function can be reformulated such that the synaptic intercon-
nections are symmetric. Consider the quadratic term of Equation E-1,

NI M

Z, Eai S4 -k ak (E- 2)
i=1 k=

Let a and # be two integers between I and M and assume for the moment that c 0 ft.
Then two of the terms in the summation given by Equation E-2, one for i = a., k = ft
and the other for i = ft, k = a, are

a S a. & af S- a.

respectively. Thus, for indices a and fP the summation given by Equation E-2 contains

the term

a, spa , + (f-) 1 f- (s), + 0-) + -1 a a),,))
163)

106

The two terms on the right side of Equation E-3 are identical. Define the modified co-

efficient s', as

S --k - 2 + k (E-4)

clearly, the modified coefficients are symmetric independent of time in the sense that

S
t

Pj.-

When i = k, the modified coefficient becomes

-L 1 (0) (+l'- = 2 siO ,) i I Ss -. 2-(-S-.. + s -t) = so

as desired. Also, using the property given by

Si = Si

the stationary channel case reduces to

S'I-k 4 -(s1k + sk-i) = Si-k

Therefore, the MLSE cost function can be written with symmetric s','s in a general form

suitable for either stationary or time-varying channels as

.i M 3f

2 -Zal z + Z' ai S'I-ka
i=1 i=l k=l

where the s' ,_'s are given by Equation E-4. Using the MLSE cost function for the

time-varying channel. the parameters for the MLSE neural network are given by
Zi I i " ' (S~ t3 (k) ,vit

= Ii -S' -k +- -k -+ _ , aik

107

APPENDIX F. PROGRAMMING THE MLSE NEURAL NETWORK

Using Fortran as programing language, the MLSE neural network, described in

Chapter V, was implemented with the Mainframe, and used to run some simulations for
different network parameters and different transmission channel conditions (stationary

or time-varving channel).

C
C THESIS RESEARCH
C SIMULATION PROGRAM OF THE MLSE NEURAL NETWORK
C BY M. H. KHAIDAR
C
C
C
C * THIS PROGRAM WAS MADE TO IMPLEMENT AND SIMULATE THE MLSE NEU-*
C * RAL NETWORK FOR A STATIONARY OR TIME-VARYING CHANNEL. THE PR-*
C * OGRAM FIRST WILL ASK THE OPERATOR TO ENTER THE DATA NECESSARY*
C * TO FULLY DESRIBE THE PROBLEM. THEN, THE PROGRAM IS GOING TO *
C * ASK THE OPERATOR IF THE PROGRAM IS TO BE RUN FOR A STATIONARY*
C * CHANNEL OR A TIME-VARYING CHANNEL. AFTER THE CHOICE IS MADE *
C * THE COMPUTER IS GOING TO DISPLAY THE SIMULATION RESULTS. *
C * VARIABLE DECLARATIONS :*
C * IR(2500) = DATA SEQUENCE OF 2500 BITS OUTPUT OF THE GGUD *
C * IMSL SUBROUTINE (= A(2600))
C * M = THE NUMBER OF NEURONS IN THE NEURAL NETWORK *
C * INPUT TO THE PROGRAM, THIS TIME IT IS 17. *
C * MITH, MITER, INDEX, XEND, IWK(17), IER, WK(290), TOL, H=ARE*
C * THE DESCRIPTION PARAMETERS OF THE PROBLEM TO THE *
C * DIFFERENTIAL EQUATIONS SOLVER DGEAR. *
C * L = CHANNEL MEMORY IN UNITS OF T (L = 2 FOR THIS *
C * SIMULATION), INPUT TO THE PROGRAM. *
C * N = THE NUMBER OF DATA TRANSMITTED (= NR), INPUT TO *
C * THE PROGRAM. *
C * P = THE NUMBER OF DATA BITS SHIFTED INTO THE REGIST-*
C * ERS AT ONCE, INPUT TO THE PROGRAM.
C * COUNT = THE NUMBER OF DATA BITS THAT DIFFER BETWEEN THE *
C * TRANSMITTED DATA AND THE MLSE NEURAL NET ESTIMATED*
C * DATA, OUTPUT OF THE PROGRAM. *
C * NUMBER = THE NUMBER OF DATA THAT DIFFER BETWEEN THE MLSE *
C * NEURAL NET ESTIMATED DATA BITS AND THE DIRECT MLSE*
C * COST FUNCTION CALCULATED DATA BITS, OUTPUT OF THE *
C * PROGRAM. *
C * REG(17) = DATA BITS IN THE 17 REGISTERS. *
C * G = GAIN FACTOR OF THE NEURAL AMPLIFIERS. *
C * VOUT(17) = THE DATA BITS OUTPUT OF THE NEURAL AMPLIFIERS. *
C * AOUT(2500) = ALL THE VOUT(17) WILL BE COLLECTED TO FORM THE*
C * HOLE ESTIMATED DATA BITS CORRESPONDING TO 2500 DA-*
C * TA BITS TRANSMITTED. *
C * IN(2500) = THE 2500 DATA POINTS GENERATED BU GGUD SUBROUTI-*
C NE TO FORM THE SAMPLES DELTA(2500) USED TO DESCRI-*

C * BE THE TIME-VARYING CHANNEL. (BETWEEN 1 AND 21) *
C * DELTA(2500) = TIME-VARYING CHANNEL COEFFICIENTS (RANGE BET-*
C * -0.1 TO 0.1). *
C * R(2500) = THE 2500 GAUSSIAN NOISE SAMPLES USED TO IMPLEME-*
C THE PRESENCE OF NOISE IN THE CHANNELS. OUTPUT OF *
C * THE GGNML IMSL SUBROUTINE. *
C * U(17) = THE 17 SOLUTIONS OF THE DIFFERENTIAL EQUATIONS *
C * SOLVER DGEAR AND INPUTS TO THE NEURAL AMPLIFIERS. *
C * T = TIME. *
C * PERIOD = BIT DURATION (INVERSE OF THE DATA RATE) *
C * MUL = A MULTIPLIER USED TO IMPLEMENT THE TIME-VARYING *
C * CHANNEL (MUL IS VARYING TOO). *
C * V(17) = EQUALS MUL AT A CERTAIN REGISTER. *
C * TNOT = TIME DURATION OF THE INTERSYMBOL INTERFERENCE. *
C * NNOT = THE SINGLE SIDED SPECTRAL DENSITY OF THE ADDITI-*
C * VE WHITE GAUSSIAN NOISE N(T). *
C * GN(2600) = GAUSSIAN NOISE SAMPLES GENERATED BY THE GGNML *
C * SUBROUTINE. *
C * GNREG(17)= GAUSSIAN NOISE SAMLES INTO THE 17 REGISTERS OF *
C THE NEURAL NETWORK.
C * Z(17) = THE 17 OBSERVATIONS OF THE STATIONARY CHANNEL *
C CALCULATED AS DESCRIBED IN THE STUDY.
C * Y(17) = THE 17 RECEIVED SAMPLES FOR A STATIONARY CHANNEL*
C CALCULATED AS DESCRIBED IN THE STUDY. *
C * YPRIME(2500) = EQUIVALENT TO Y(17) BUT THIS TIME WHEN *
C * CALCULATING FOR THE MLSE COST FUNCTION. *
C * ZPRIME(2500) = EQUIVALENT TO Z(17), FOR THE MLSE COST
C FUNCTION. *
C * MLSECF(2500)= THE 2500 SAMPLES GENERATED BY DIRECT CALCULA-*
C TION OF THE MLSE COST FUNCTION.
C * SNR = SIGNAL-TO-NOISE RATIO (INPUT TO THE PROGRAM).
C * VPRIME(2500) = SAME AS V(17) BUT NOW IT'S FOR THE MLSE COST,'
C * FUNCTION.
C * DR = DATA RATE (INPUT TO THE PROGRAM, MAXIMUM 2400).
C * FCN = SUBROUTINE DESCRIBING THE M DIFFERENTIAL EQUATIONS*
C FCNJ = EXTRA SUBROUTINE BUT NECESSARY.
C W(17,17) = THE SYNAPTIC CONNECTION MATRIX FOR THE NETWORK *
C * ACTUALLY IT'S AN M BY M MATRIX.
C * TAU = TIME CONSTANT OF THE CIRCUIT.
C * CURRENT(17) = THE 17 INPUT CURRENTS TO THE 17 NEURONS OF *
C THE NEURAL NETWORK. *
C * VIN(17) = THE 17 DATA BITS INTO THE 17 REGISTERS OF THE
C * NEURAL NETWORK.
C *

C
C

INTEGER IR(2500), X, NR, A(2600), M, METH, MITER, INDEX, ANS
INTEGER IWK(17), IER, L, N, P, COUNT, SUP, MIN, NUMBER, RESP
INTEGER MAX, REG(17), G, C, D, Q, VOUT(17), AOUT(2500), IN(2500)
INTEGER DOWN, UP
REAL R(2500), U(17), WK(290), T, TOL, H, PERIOD, MUL, V(17)
REAL TNOT, NNOT, GN(2600), GNREG(17), SUM, FACTOR, DELTA(2500)
REAL SUMI, Z(17), F, S, SUM2, YPRIME(2500), Y(17), SUMS, SUM6
REAL SUM3, ZPRIME(2500), SUM4, MLSECF(2500), SNR, SUM7, SUM8
REAL SUM9, VPRIME(2500), DR
DOUBLE PRECISION DSEED

109

EXTERNAL FCN, FCNJ
COMMON W(17,17), TAU, CURRENT(17), VIN(17)

C
C

PRINT*,' NEURAL NETWORK AS A MLSE RECEIVER'
PRINT*,'
PRINT*,'

3000 PRINT",'PLEASE, ENTER YOUR CHOICE, DO YOU WANT TO
PRINT 1

1&FORMAT(8X,'(1)',' :,'CONTINUE WITH THE PROGRAM'/
&8X,'(2)1,' ','QUIT'
READ*,RESP
IF(RESP. EQ.1) THEN

GOTO 2
ELSE

GOTO 3
ENDIF

2 PRINT*,'
PRINT*,'
PRINT*,'PLEASE, ENTER THE NUMBER OF NEURONS (M)
READ*,M
PRINT*,'PLEASE, ENTER THE DATA RATE DESIRED (HZ)
READ*,DR
PRINT*,'PLEASE, ENTER THE CHANNEL MEMORY (L)
READ*,L
PRINT*,'PLEASE, ENTER THE TIME CONSTANT (TAU)
READ*,TAU
PRINT ','PLEASE, ENTER THE SNR (IN DB)
READ*,SNR
PRINT*','PLEASE, ENTER THE NUMBER OF SYMBOL TRANSMITTED (N) :'
READ*,N
PRINT*','PLEASE, ENTER THE NO. OF SHIFTED SYMBOLS IN THE REG. (P):'
READ*,P
COUNT = 0
DOWN = 1
UP = M
SUP = M
MIN = 1
NUMBER = 0
MAX = M

C
C ******.************** **,' ************************ **

C * GENERATION OF THE N DATA SEQUENCE AND THE N GAUSSIAN NOISE *
C * SAMPLES AND PUTTING THE FIRST M DATA BITS AND M NOISE SAMPLES*
C * INTO THE M REGISTERS OF THE NETWORK TO START THE PROCESSING. *
C
C

PERIOD = 1 / DR
TNOT = L * PERIOD
NNOT = (3 * TNOT) / (4 * (10 ** (SNR / 10.0)))
X=2
NR = N
DSEED = 123457.0D00
CALL GGUD(DSEED,X,NR,IR)
DO 10 I = 1, NR

IF(IR(I).EQ. 2) THEN

110

A(I) = -1
ELSE

A(I) = +1
ENDIF

10 CONTINUE
DSEED = 123457.ODOO
CALL GGNML(DSEED,NR, R)
DO 20 I = 1, NR

GN(I) = R(I)
20 CONTINUE

DO 30 I = 1, M
REG(I) = A(I)
GNREG(I) = GN(I)

30 CONTINUE
PRINT* '
PRINT*,'
PRINT*,'YOUR DATA IS NOW ENTERED, THE NETWORK IS READY TO BE'
PRINT'*'SIMULATED. THIS PROGRAM CAN SIMULATE THE MLSE NEURAL'
PRINT*,'NETWORK IN TWO CONDITIONS OF TRANSMISSION CHANNEL :'
PRINT*,'
PRINT 5

5 FORMAT(8X,'(1)',' ','IN A STATIONARY CHANNEL'/
&SX,'(2)',' ','IN A TIME-VARYING CHANNEL')
PRINT*,' '
PRINT*,'PLEASE, ENTER YOUR CHOICE
READ*, ANS
PRINT*,'
PRINT*,'
PRINT 12

12 FORMAT(12X,'PROCESSING IN PROGRESS PLEASE WAIT')
PRIN T*,'
PRINT*,'
IF(ANS. EQ. 1) THEN

GOTO 200
ELSE

GOTO 500
ENDIF

C
C
C * SIMULATION OF MLSE NEURAL NETWORK IN A STATIONARY CHANNEL *
C
C

200 DO 40 I = 1, M
SUM = 0
DO 50 K = 1, M

FACTOR = (I - K) * PERIOD
SUM = SUM + REG(K) * F(FACTOR,TNOT)

50 CONTINUE
Y(I) = SUM + GNREG(I)

40 CONTINUE
DO 60 I = 1, M

SUM1 = 0
DO 70 K = 1, M

FACTOR = (K - I) * PERIOD
SUMI = SUM1 + Y(K) * F(FACTOR,TNOT)

70 CONTINUE

111

Z(I) = suMi
60 CONTINUE

DO 90 I = 1, M
CURRENT(I) = 2 * Z(I)
VIN(I) = REG(I)
DO 100 K = 1, M

FACTOR = (I - K) * PERIOD
W(I,K) = -2 * S(FACTOR,TNOT,NNOT)

100 CONTINUE
90 CONTINUE

GOTO 1000
C
C
C * SIMULATION OF MLSE NEURAL NETWORK IN A TIME-VARYING CHANNEL *
C
C

500 NB = 21
NR= N
DSEED = 123457.ODO
CALL GGUD(DSEED,NB,NR,IN)
DO 31C I = 1, NR

IF(IN(I).GE.I.AND.IN(I).LT.11) THEN
DELTA(I) = -IN(I) / 100.0

ELSEIF(IN(I).GE.1.AND.IN(I).LT.21) THEN
DELTA(I) = (IN(I) - 10) / 100.0

ELSE
DELTA(I) = 0

ENDIF
310 CONTINUE

K= 1
DO 320 I = DOWN , UP

V(K) = DELTA(I) + 0.9
K=K+ 1

320 CONTINUE
DOWN = DOWN + M
UP = UP + M
IF(UP. GE.N) UP = N
DO 330 I = 1 , M

SUM5 = 0
DO 340 K = 1 , M

FACTOR = (I - K) * PERIOD
MUL = V(K)

SUM5 = SUM5 + REG(K) * FPRIME(FACTOR,TNOT,MUL)
340 CONTINUE

Y(I) = SUM5 + GNREG(I)
330 CONTINUE

DO 460 I = 1 , M
SUM6 = 0
DO 360 K = 1 , M

FACTOR = (K - I) * PERIOD
MUL = V(K)
SUM6 = SUM6 + Y(K) * FPRIME(FACTOR,TNOT,MUL)

360 CONTINUE
Z(I) = SUM6

460 CONTINUE
DO 370 I = 1 , M

112

CURRENT(I) = 2 * Z(I)
VIN(I) = REG-I)
DO 380 K = 1 , M

FACTOR (I - K) * PERIOD
MUL = V(K)
W(I,K) = -2 * SPRIME(FACTOR,TNOT,NNOT,MUL)

380 CONTINUE
370 CONTINUE

1000 G = 10000
T = 0.0
DO 80 I = 1, M

U(I) = 0.0
80 CONTINUE

TOL = 0.00001
H = 0.000001
MITER = 0
METH = 1
INDEX = 1
XEND = 5 * TAU

C
C *
C * AFTER DOING SOME CALCLLATIONS NOW WE ARE READY TO CALL DGEAR *
C * THE DIFFERENTIAL EQUATIONS SOLVER TO SOLVE OUR M EQUATIONS. *
C
C

CALL DGEAR(M,FCN,FCNJ,T,H,U,XEND,TOL,METH,MITER,INDEX,IWK,WK,IER)
IF(IER.GT. 128) THEN

PRINT 13,IER
13 FORMAT(/,' WARNING !!!!!... IER = ',15)

GOTO 3
ENDIF

c
C
C -THE OUTPUT OF DGEAR, SOLUTIONS TO OUR M DIFFERENTIAL EQUATIONS*
C *ARE PASSED THROUGH THE M NEURAL AMPLIFIERS TO GET THE MLSE NEU*
C *RAL NETWORK ESTIMATES OF THE M DATA BITS THAT ARE IN THE M REG*
C *ISTERS.

DO 110 I = 1, M

VOUT(I) = -TANH(G * U(I))
110 CONTINUE

DO 111 I = 1 , M
IF(REG(I).EQ.0) VOUT(I) = 0

111 CONTINUE
C
C *HERE THE DATA BITS OUTPUTS OF THE NEURAL AMPLIFIERS ARE COLLE-*
C *CTED SO THAT LATER WE ARE GOING TO HAVE THE HOLE 2500 ESTIMATE*
C *-S OF THE 2500 DATA BITS TRANSMITTED. *
C
C

IF(MAX.EQ.M) THEN
K 1
DO 115 J = 1 , M-I

AOUT(K) VOUT(J)
KK+ 1

113

115 CONTINUE
ELSEIF(MAX. NE. N) THEN

DO 116 J = M-P , M-1
AOUT(K) = VOUT(J)
K=K+ 1

116 CONTINUE
ELSEIF(MAX. EQ. N) THEN

MPRIME = M - P
DO 118 I = M , 1 , -1

IF(REG(I).EQ.0) THEN
M=M - 1

ENDIF
118 CONTINUE

IF(M.GT.MPRIME) THEN
DO 117 J = MPRIME , M

AOUT(K) = VOUT(J)
KK+ 1

117 CONTINUE
ENDIF

ENDIF
C
C
C *HERE, THE ESTIMATES FROM NEURONS L+1 THROUGH M-1 ARE TAKEN AS *
C *VALID. THEN A COMPARISON BETWEEN THESE ESTIMATES AND THEIR COR*
C *RESPONDING IN THE REGISTERS I.E. THE INPUT DATA BITS IS MADE
C *AND THE RESULT IS RECORDED FOR LATER USE.
C ********** ',** * ***************************************

C
C=L+ 1
D =1M - 1
IF(MAX. EQ. M) THEN

DO 120 I = 1, M
IF(VIN(I).NE.VOUT(1)) THEN

COUNT = COUNT + 1
ENDIF

120 CONTINUE
ELSEIF(MAX. EQ. N) THEN

DO 165 I = M, 1, -1
IF(REG(I). EQ. 0) THEN

M=M - i
ENDIF

165 CONTINUE
DO 166 I = C, M

IF(VIN(I).NE.VOUT(I)) THEN
COUNT = COUNT + 1

ENDIF
166 CONTINUE

ELSE
DO 130 I = C, D

IF(VIN(I).NE.VOUT(I)) THEN
COUNT = COUNT + 1

ENDIF
130 CONTINUE

ENDIF
C
C

L

114

C *HERE, THE DATA BITS IN THE REGISTERS FROM 1 TO P ARE NULLED *
C *THEN THE CONTENT OF THE SHIFT REGISTERS ARE SHIFTED TO THE RIG*
C *HT TILL THE CONTENT OF REGISTER 1 IS NONZERO. THEN, WE ARE FEE*
C *DING THE P EMPTY REGISTERS BY THE NEXT P DATA BITS OF THE TRAN*
C *SMIITTED SEQUENCE FOR ANOTHER PROCESSING CYCLE. I
C
C

DO 140 I = 1, P
REG(I) = 0
GNREG(I) = 0

140 CONTINUE
Q= 1

150 IF(Q. LE. M) THEN
IF((P+Q).LE.M) THEN

REG(Q) = REG(P+Q)
GNREG(Q) = GNREG(P+Q)

ELSE
REG(Q) = 0
GNREG(Q) = 0

ENDIF
Q=Q+ 1
GOTO 150

ENDIF
155 IF(MAX. EQ.N) THEN

PRINT*,'THE NUMBER OF ERROR DATA BETWEEN THE TRANSMITTED'
PRINT*,'BINARY SEQUENCE AND THE MLSE NEURAL NET OUTPUT'
PRINT*,'DATA IS
PRINT-,' '
PRINT 270, COUNT

270 FORMAT(2X,'COUNT =',2X,I5)
GOTO 2000
ENDIF
DO 160 I 1, M

IF(REG(I).EQ. 0) THEN
MAX = MAX + 1
IF(MAX.GT.N) THEN

A(MAX) = 0
GN(MAX) 0

ENDIF
REG(I) = A(MAX)
GNREG(I) = GN(MAX)

ENDIF
160 CONTINUE

IF(MAX.GT.N) THEN
MAX = N

ENDIF
IF(ANS. EQ.1) THEN

GOTO 200
ELSE

GOTO 500
ENDIF

2000 IF(ANS.NE.1) THEN
GOTO 300

ENDIF
C
C

C *AFTER, THE MLSE NEURAL NETWORK HAS ESTIMATED THE N DATA BITS *
C *TRANSMITTED, WE ARE NOW GOING TO START CALCULATING THE DIRECT *
C *MLSE COST FUNCTION ESTIMATES OF THE N TRANSMITTED DATA BITS *
C *THEN, WE ARE GOING TO MAKE A COMPARISON BETWEEN THE TWO ESTIMA*
C *TES AND RECORD THE RESULT.
C
C

700 DO 180 I = MIN, SUP
SUM2 = 0
DO 190 K = MIN, SUP

FACTOR = (I - K) * PERIOD
SUM2 = SUM2 + A(K) * F(FACTOR,TNOT)

190 CONTINUE
YPRIME(I) = SUM2 + GN(I)

180 CONTINUE
DO 230 I = MIN, SUP

SUM3 = 0
DO 240 K = MIN, SUP

FACTOR = (K - I) * PERIOD
SUM3 = SUM3 + YPRIME(K) * F(FACTOR,TNOT)

240 CONTINUE
ZPRIME(I) = SUM3

230 CONTINUE
DO 250 I = MIN, SUP

SUM4 = 0
DO 260 K= MIN, SUP

FACTOR = (I - K) * PERIOD
SUM4 = SUM4 + A(I) * S(FACTOR,TNOT,NNOT) * A(K)

260 CONTINUE
MLSECF(I) = 2 * A(I) * ZPRIME(I) - SUM4

250 CONTINUE
GOTO 350

300 J = 1
DO 470 I = MIN , SUP

VPRIME(I) = V(J)
J=J+ 1

470 CONTINUE
DO 390 I = MIN , SUP

SUM7 = 0
DO 410 K = MIN , SUP

FACTOR = (I - K) * PERIOD
MUL = VPRIME(K)
SUM7 = SUM7 + A(K) * FPRIME(FACTOR,TNOT,MUL)

410 CONTINUE
YPRIME(I) = SUM7 + GN(I)

390 CONTINUE
DO 420 I = MIN , SUP

SUM8 = 0
DO 430 K = MIN , SUP

FACTOR = (K - I) * PERIOD
MUL = VPRIME(K)
SUM8 = SUM8 + YPRIME(K) * FPRIME(FACTOR,TNOT,MUL)

430 CONTINUE
ZPRIME(I) = SUM8

420 CONTINUE
DO 440 I = MIN , SUP

116

SUM9 = 0
DO 450 K = MIN , SUP

FACTOR = (I - K) * PERIOD
MUL = VPRIME(K)
SUM9 = SUM9 + A(I)*SPRIME(FACTOR,TNOT,NNOT,MUL)*A(K)

450 CONTINUE
MLSECF(I) = 2 * A(I) * ZPRIME(I) - SUM9

440 CONTINUE
350 IF(SUP.EQ.N) GOTO 400

MIN = MIN + M
SUP = SUP + M
IF(SUP.GT.N) THEN

SUP = N
ENDIF
IF(ANS. EQ.1) THEN

GOTO 700
ELSE

GOTO 300
ENDIF

400 DO 280 I = I, N
IF(AQUT(I).NE. MLSECF(I)) THEN

NUMBER = NUMBER + 1
ENDIF

280 CONTINUE
PRINT*,'THE NUMBER OF ERROR DATA BETWEEN THE TRANSMITTED'
PRINT*,'BINARY SEQUENCE OF DATA AND DATA DIRECTLY GENERATED'
PRINT*,'BY THE MLSE COST FUNCTION
PRINT*,' '
PRINT 290,NUMBER

290 FORMAT(2X,'NUMBER =',4X,I5)
GOTO 3000

3 STOP
END

C
C
C *HERE IS THE SUBROUTINE CORRESONDING TO THE TRANSMISSION CHANNE*
C *L IMPULSE RESPONSE WHICH IS MODELED BY A FINITE RESPONSE SQUAR*
C *ED COSINE FUNCTION. THIS FUNCTION IS IMPLEMENTING THE STATIONA*
C *RY CHANNEL. *
C **...**dd............*** *....................*,'e,'. .e.-' *

C
FUNCTION F(FACTOR,TNOT)
REAL FACTOR
REAL F, TNOT, PI, SUP
PI = 3.1415927
SUP TNOT / 2.0
IF(ABS(FACTOR).LE. SUP) THEN

F = (COS(PI *FACTOR / TNOT)) ** 2
ELSE

F 0
ENDIF
RETURN
END

C
C
C *HERE IS THE COMBINED RESPONSE OF THE CHANNEL AND MATCHED *

117

C *FILTER. THIS FUNCTION IS IMPLEMENTING THE STATIONARY CHANNEL. *
C
C

FUNCTION S(FACTOR,TNOT,NNOT)
REAL FACTOR, S, TNOT, NNOT, PI
PI = 3.1415927
!F(ABS(FACTOR).LE. TNOT) THEN

S = (1 / (2 * NNOT)) * ((TNOT - ABS(FACTOR))
& * (1 + 0.5 * COS(2 * PI * FACTOR / TNOT))
& + (3 * TNOT / 4.0) * SIN (2 * PI * ABS(FACTOR) * TNOT))
ELSE

S=0
ENDIF
RETURN
END

C
C
C *HERE ARE THE SET OF DIFFERENTIAL EQUATIONS DESCRIBING THE DYNA*
C *MICS OF THE NEURAL NETWORK. *
C *****
C

SUBROUTINE FCN(M,T,U,UPRIME)
INTEGER M
REAL U(M), UPRIME(M), T, SOM
COMMON W(17,17), TAU, CURRENT(17), VIN(17)
DO 210 I = 1, M

SOM = 0
DO 220 K = 1, M

SOM = SOM + W(I,K) * VIN(K)
220 CONTINUE

UPRIME(I) = SOM - (U(I) / TAU) + CURRENT(:)
210 CONTINUE

RETURN
END

C
SUBROUTINE FCNJ(M,T,U,PD)
INTEGER M
REAL U(M), PD(M,M), T
RETURN
END

C
C
C *SAME AS FOR THE FUNCTION F ONLY THIS TIME IS FOR THE TIME-VARY",

C *ING CHANNEL. *
C
C

FUNCTION FPRIME(FACTOR,TNOT,MUL)
REAL FACTOR
REAL FPRIME, TNOT, PI, SUP, MUL
PI = 3.1415927
SUP = TNOT / 2.0
IF(ABS(FACTOR).LE. SUP) THEN

FPRIME = MUL * ((COS(PI *FACTOR / TNOT)) ** 2)
ELSE

FPRIME = 0
ENDIF

i's

RETURN
END

C
C
C *SAME AS BEFORE (FOR THE FUNCTION S) ONLY THIS TIME IT IS FOR *
C *THE TIME-VARYING CHANNEL. *
C
C

FUNCTION SPRIME(FACTOR,TNOT,NNOT,MUL)
REAL FACTOR, SPRIME, TNOT, NNOT, PI, MUL
PI = 3.1415927
IF(ABS(FACTOR).LE. TNOT) THEN

SPRIME = ((MUL ** 2) / (2 * NNOT)) * ((TNOT - ABS(FACTOR))
& * (1 + 0.5 * COS(2 * PI * FACTOR / TNOT))
& + (3 * TNOT / 4.0) * SIN (2 * PI * ABS(FACTOR) * TNOT))
ELSE

SPRIME = 0
ENDIF
RETURN
END

119

LIST OF REFERENCES

1. DARPA. Neural Netiwork Study, AFCEA International Press, November 1988.

2. Lippmann, Richard P., "An Introduction to Computing With Neural Nets." IEEE,

ASSP .Mfaga:ine, pp. 4-22, April 1987.

3. Provence, John D., "Neural Network Implementation for Maximum-Likelihood
Sequence Estimation of Binary Signals in Gaussian Noise," 1987 IEEE Interna-

tional Conference On Neural Networks, Vol. 3, pp. 703-714.

4. Lippmann. R. P.. Gold. B. and Malpass, M. L., "A Comparison of Hammning and

Hopfield Neural Nets for Pattern Classification," Technical Report No. AD-AIS2

255, MTI, 21 May 19S7.

5. Arbib, Michael A., Brains, Machines and Mathematics, Springer- Verlag, 1987.

6. Denker, John S., Neural Networks for Computing, AIP Conference Proceedings 151.

Snowbird, UT. 1986.

7. Grossberg, S., "Adaptive Pattern Classification and Universal Recording: Feedback,

Expectation, Olfaction, and Illusions," Biological Cybernetics, Vol. 23, pp. 1S7-202.
1976.

8. Gottfried, Ungerboeck, "Adaptive Maximum-Likelihood Receiver for Carrier-

Modulated Data-transmission Systems," IEEE Transactions on Communications,

Vol. COM-22. pp. 624-636, May 1974.

9. Proakis, John G., Digital Communications, pp. 351-352, pp. 394-412, McGraw-Hill,

1983.

10. Hopfield. J. J. and Tank, D. W., "Neural Computation of Decisions in Optimization
Problems," Biological Cybernetics, Vol. 52, Springer-Verlag, pp. 141-152, 19S5.

120

11. Gottfried. Ungerboeck, "Nonlinear Equalization of Binary Signals in Gaussian

Noise." IEEE Transactions on Communications Theory, Vol. COM-19, pp.

1128-1137, Dec 1971.

12. Carpenter, Gail A. and Grossberg S., "A Massively Parallel Architecture For a

Self-Organizing Neural Pattern Recognition Machine," Computer Vision, Graphics

and Image Processing, Vol. 37, pp. 54-115, 1987.

121

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Librarv. Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman. Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Tri T. Ha. Code 62Ha 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor R. Janaswamy. Code 62Js 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey. CA 93943 5000

6. Etat Major de la Marine Royale
Division du Personnel et d'Instruction
Rabat MOROCCO

7. Ecole Royale Navale
l.ibrairie
Casablanca 01 , MOROCCO

8. Mohamed Hlassan Khaidar 4
Rue Souissi. No. 2
Sidi Amar Lahcini
Meknes, MOROCCO

9. Shu Shih Ming
SMC 2156
Naval Postgraduate School
Monterey, CA 93943-5000

10. Al1 Metlaq Issam
SMC 1619
Nasal Postgraduate School
Monterey, CA 93943-5000

122

